mmselfsup/openselfsup/datasets/contrastive.py

28 lines
894 B
Python

import torch
from PIL import Image
from .registry import DATASETS
from .base import BaseDataset
@DATASETS.register_module
class ContrastiveDataset(BaseDataset):
"""Dataset for rotation prediction
"""
def __init__(self, data_source, pipeline):
super(ContrastiveDataset, self).__init__(data_source, pipeline)
def __getitem__(self, idx):
img = self.data_source.get_sample(idx)
assert isinstance(img, Image.Image), \
'The output from the data source must be an Image, got: {}. \
Please ensure that the list file does not contain labels.'.format(
type(img))
img1 = self.pipeline(img)
img2 = self.pipeline(img)
img_cat = torch.cat((img1.unsqueeze(0), img2.unsqueeze(0)), dim=0)
return dict(img=img_cat)
def evaluate(self, scores, keyword, logger=None):
raise NotImplemented