87 lines
19 KiB
Markdown
87 lines
19 KiB
Markdown
# Model Zoo
|
|
|
|
All models and part of benchmark results are recorded below.
|
|
|
|
## Pre-trained models
|
|
|
|
| Algorithm | Config | Download |
|
|
| ------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| [BYOL](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/README.md) | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k_20211213-30dbaef1.pth) | [log](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k_20211111_212813.log.json) |
|
|
| | [byol_resnet50_8xb32-accum16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k_20211213-47673e22.pth) | [log](https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-300e_in1k_20211129_163841.log.json) |
|
|
| [DeepCLuster](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/README.md) | [deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k-bb8681e2.pth) |
|
|
| [DenseCL](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/README.md) | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k_20211214-1efb342c.pth) | [log](https://download.openmmlab.com/mmselfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k_20211210_230413.log.json) |
|
|
| [MoCo v2](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/README.md) | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/moco/mocov2_resnet50_8xb32-coslr-200e_in1k_20211213-7ce8f840.pth) | [log](https://download.openmmlab.com/mmselfsup/moco/mocov2_resnet50_8xb32-coslr-200e_in1k_20211208_161634.log.json) |
|
|
| [NPID](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/README.md) | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k_20211213-b5fec6df.pth) | [log](https://download.openmmlab.com/mmselfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k_20211210_124652.log.json) |
|
|
| [ODC](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/odc/README.md) | [odc_resnet50_8xb64-steplr-440e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k-5af5dd0c.pth) |
|
|
| [Relative Location](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/README.md) | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20211213-cdd3162f.pth) | [log](https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20210930_144754.log.json) |
|
|
| [Rotation Prediction](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/README.md) | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20211213-513972ac.pth) | [log](https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20210930_151459.log.json) |
|
|
| [SimCLR](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/README.md) | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k_20211213-d0e53669.pth) |
|
|
| [SimSiam](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/README.md) | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20211230-65a0eff4.pth) | [log](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20211225_132004.log.json) |
|
|
| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20211213-b605f9f1.pth) | [log](https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k_20211225_132031.log.json) |
|
|
| [SwAV](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/README.md) | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | [model](https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20211213-0028900c.pth) | [log](https://download.openmmlab.com/mmselfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96_20211206_102636.log.json) |
|
|
|
|
Remarks:
|
|
|
|
- The training details are recorded in the config names.
|
|
|
|
- You can click algorithm name to obtain more information.
|
|
|
|
## Benchmarks
|
|
|
|
In following tables, we only displayed ImageNet Linear Evaluation, COCO17 Object Detection and PASCAL VOC12 Aug Segmentation, you can click algorithm name above to check the comprehensive benchmark results.
|
|
|
|
### ImageNet Linear Evaluation
|
|
|
|
If not specified, we use linear evaluation setting from [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf). Or the settings is mentioned in Remark.
|
|
|
|
| Algorithm | Config | Remarks | Top-1 (%) |
|
|
| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------- | --------- |
|
|
| BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | | 67.68 |
|
|
| DeepCLuster | [deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py) | | 46.92 |
|
|
| DenseCL | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | | 63.34 |
|
|
| MoCo v2 | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | | 67.56 |
|
|
| NPID | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | | 58.16 |
|
|
| ODC | [odc_resnet50_8xb64-steplr-440e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k.py) | | 53.42 |
|
|
| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | | 39.65 |
|
|
| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | | 44.35 |
|
|
| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | | 58.92 |
|
|
| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | SimSiam paper setting | 68.20 |
|
|
| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | SimSiam paper setting | 69.80 |
|
|
| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | SwAV paper setting | 70.55 |
|
|
|
|
### COCO17 Object Detection
|
|
|
|
In COCO17 Object detection task, we choose the evluation protocol from [MoCo](http://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf), with Mask-RCNN architecture, the results below are trained with the same [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/mmdetection/coco/mask_rcnn_r50_fpn_mstrain_1x_coco.py).
|
|
|
|
| Algorithm | Config | mAP (Box) | mAP (Mask) |
|
|
| ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------- | ---------- |
|
|
| BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | 40.9 | 36.8 |
|
|
| DenseCL | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | | |
|
|
| MoCo v2 | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | 40.2 | 36.1 |
|
|
| NPID | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | | |
|
|
| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | 37.5 | 33.7 |
|
|
| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | 37.9 | 34.2 |
|
|
| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | 38.7 | 34.9 |
|
|
| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 38.6 | 34.6 |
|
|
| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 38.8 | 34.9 |
|
|
| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | 40.2 | 36.3 |
|
|
|
|
### Pascal VOC12 Aug Segmentation
|
|
|
|
In Pascal VOC12 Aug Segmentation task, we choose the evluation protocol from [MMSeg](https://github.com/open-mmlab/mmsegmentation), with FCN architecture, the results below are trained with the same [config](configs/benchmarks/mmsegmentation/voc12aug/fcn_r50-d8_512x512_20k_voc12aug.py).
|
|
|
|
| Algorithm | Config | mIOU |
|
|
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- |
|
|
| BYOL | [byol_resnet50_8xb32-accum16-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k.py) | 67.16 |
|
|
| DeepCLuster | [deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/deepcluster/deepcluster-sobel_resnet50_8xb64-steplr-200e_in1k.py) | 59.69 |
|
|
| DenseCL | [densecl_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py) | 69.47 |
|
|
| MoCo v2 | [mocov2_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov2/mocov2_resnet50_8xb32-coslr-200e_in1k.py) | 67.55 |
|
|
| NPID | [npid_resnet50_8xb32-steplr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k.py) | 65.45 |
|
|
| ODC | [odc_resnet50_8xb64-steplr-440e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k.py) | 54.76 |
|
|
| Relative Location | [relative-loc_resnet50_8xb64-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k.py) | 63.49 |
|
|
| Rotation Prediction | [rotation-pred_resnet50_8xb16-steplr-70e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k.py) | 64.31 |
|
|
| SimCLR | [simclr_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k.py) | 64.03 |
|
|
| SimSiam | [simsiam_resnet50_8xb32-coslr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k.py) | 48.35 |
|
|
| | [simsiam_resnet50_8xb32-coslr-200e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simsiam/simsiam_resnet50_8xb32-coslr-200e_in1k.py) | 46.27 |
|
|
| SwAV | [swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/swav/swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py) | 63.73 |
|