69 lines
1.7 KiB
Python
69 lines
1.7 KiB
Python
_base_ = [
|
|
'../_base_/models/vit-base-p16_ft.py',
|
|
'../_base_/datasets/imagenet.py',
|
|
'../_base_/schedules/adamw_coslr-100e_in1k.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# dataset
|
|
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
train_pipeline = [
|
|
dict(
|
|
type='RandomAug',
|
|
input_size=224,
|
|
color_jitter=None,
|
|
auto_augment='rand-m9-mstd0.5-inc1',
|
|
interpolation='bicubic',
|
|
re_prob=0.25,
|
|
re_mode='pixel',
|
|
re_count=1,
|
|
mean=(0.485, 0.456, 0.406),
|
|
std=(0.229, 0.224, 0.225))
|
|
]
|
|
test_pipeline = [
|
|
dict(type='Resize', size=256, interpolation=3),
|
|
dict(type='CenterCrop', size=224),
|
|
dict(type='ToTensor'),
|
|
dict(type='Normalize', **img_norm_cfg)
|
|
]
|
|
data = dict(
|
|
samples_per_gpu=128,
|
|
drop_last=False,
|
|
workers_per_gpu=32,
|
|
train=dict(pipeline=train_pipeline),
|
|
val=dict(pipeline=test_pipeline))
|
|
|
|
# model
|
|
model = dict(backbone=dict(init_cfg=dict()))
|
|
|
|
# optimizer
|
|
optimizer = dict(
|
|
lr=1e-3 * 1024 / 256,
|
|
paramwise_options={
|
|
'ln': dict(weight_decay=0.),
|
|
'bias': dict(weight_decay=0.),
|
|
'pos_embed': dict(weight_decay=0.),
|
|
'cls_token': dict(weight_decay=0.)
|
|
},
|
|
constructor='TransformerFinetuneConstructor',
|
|
model_type='vit',
|
|
layer_decay=0.65)
|
|
|
|
# learning policy
|
|
lr_config = dict(
|
|
policy='StepFixCosineAnnealing',
|
|
min_lr=1e-6,
|
|
warmup='linear',
|
|
warmup_iters=5,
|
|
warmup_ratio=1e-4,
|
|
warmup_by_epoch=True,
|
|
by_epoch=False)
|
|
|
|
# runtime
|
|
checkpoint_config = dict(interval=1, max_keep_ckpts=3, out_dir='')
|
|
persistent_workers = True
|
|
log_config = dict(
|
|
interval=100, hooks=[
|
|
dict(type='TextLoggerHook'),
|
|
])
|