mmselfsup/configs/selfsup/_base_/datasets/imagenet_simmim.py

53 lines
1.4 KiB
Python

# dataset settings
dataset_type = 'mmcls.ImageNet'
data_root = 'data/imagenet/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RandomResizedCrop',
size=192,
scale=(0.67, 1.0),
ratio=(3. / 4., 4. / 3.)),
dict(type='RandomFlip', prob=0.5),
dict(
type='SimMIMMaskGenerator',
input_size=192,
mask_patch_size=32,
model_patch_size=4,
mask_ratio=0.6),
dict(
type='PackSelfSupInputs',
algorithm_keys=['mask'],
meta_keys=['img_path'])
]
train_dataloader = dict(
batch_size=256,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))
# for visualization
vis_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(192, 192), backend='pillow'),
dict(
type='SimMIMMaskGenerator',
input_size=192,
mask_patch_size=32,
model_patch_size=4,
mask_ratio=0.6),
dict(
type='PackSelfSupInputs',
algorithm_keys=['mask'],
meta_keys=['img_path'])
]