mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
* [Feature]: Add BEiT Support * [Fix]: fix bugs after update * [Fix]: fix bugs in backbone * [Refactor]: refactor config * [Feature]: Support BEiTv2 * [Fix]: Fix UT * [Fix]: rename some configs * [Fix]: fix beitv2neck * [Refactor]: refactor beitv2 * [Fix]: fix lint * refactor configs * refactor beitv2 * update configs * add dalle target generator * refactor for beitv1 * refactor rel_pos_bias of beit * update configs * update configs * update v1 configs * update v2 configs * refactoe layer decay * update unittest * fix lint * fix ut * add docstrings * rename * fix lint * add beit model and log links * fix lint * update according to review * update * update * update LearningRateDecayOptimWrapperConstructor related configs * update init and backbone * update neck and vqkd * refactor neck * fix lint * add some comments * fix typo Co-authored-by: 任琴 <PJLAB\renqin@shai14001114l.pjlab.org> Co-authored-by: fangyixiao18 <fangyx18@hotmail.com>
66 lines
1.7 KiB
Python
66 lines
1.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
from mmengine.structures import InstanceData
|
|
|
|
from mmselfsup.models import BEiT
|
|
from mmselfsup.structures import SelfSupDataSample
|
|
from mmselfsup.utils import register_all_modules
|
|
|
|
data_preprocessor = dict(
|
|
type='TwoNormDataPreprocessor',
|
|
mean=(123.675, 116.28, 103.53),
|
|
std=(58.395, 57.12, 57.375),
|
|
second_mean=(-20.4, -20.4, -20.4),
|
|
second_std=(204., 204., 204.),
|
|
bgr_to_rgb=True)
|
|
|
|
# model settings
|
|
backbone = dict(
|
|
type='BEiTViT',
|
|
arch='base',
|
|
patch_size=16,
|
|
drop_path_rate=0.1,
|
|
final_norm=True,
|
|
layer_scale_init_value=0.1,
|
|
)
|
|
neck = None
|
|
head = dict(
|
|
type='BEiTV1Head',
|
|
embed_dims=768,
|
|
num_embed=8192,
|
|
loss=dict(type='BEiTLoss'))
|
|
target_generator = dict(type='DALL-E')
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_beitv1():
|
|
register_all_modules()
|
|
|
|
model = BEiT(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
target_generator=target_generator,
|
|
data_preprocessor=data_preprocessor)
|
|
|
|
fake_img = torch.rand((1, 3, 224, 224))
|
|
fake_target_img = torch.rand((1, 3, 112, 112))
|
|
fake_mask = torch.zeros((196)).bool()
|
|
fake_mask[75:150] = 1
|
|
fake_data_sample = SelfSupDataSample()
|
|
fake_mask = InstanceData(value=fake_mask)
|
|
fake_data_sample.mask = fake_mask
|
|
fake_data_sample = [fake_data_sample]
|
|
|
|
fake_data = {
|
|
'inputs': [fake_img, fake_target_img],
|
|
'data_sample': fake_data_sample
|
|
}
|
|
|
|
fake_batch_inputs, fake_data_samples = model.data_preprocessor(fake_data)
|
|
fake_outputs = model(fake_batch_inputs, fake_data_samples, mode='loss')
|
|
assert isinstance(fake_outputs['loss'].item(), float)
|