Yuan Liu 20488d01b4
[Refactor]: Refactor data flow (#429)
* [Refactor]: Refactor data flow

* [Fix]: Change data sample to data samples

* [Fix]: Change batch_inputs to inputs

* [Fix]: Fix lint and UT

* [Fix]: Fix UT

* [Fix]: Fix lint

* [Fix]: Fix docstring

* [Fix]: Fix UT

* [Refactor]: Add assert in data preprocessor

* [Fix]: Fix lint
2022-08-30 11:34:04 +08:00

60 lines
1.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmengine.structures import InstanceData
from mmselfsup.models.algorithms import NPID
from mmselfsup.structures import SelfSupDataSample
from mmselfsup.utils import register_all_modules
register_all_modules()
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='LinearNeck', in_channels=512, out_channels=2, with_avg_pool=True)
head = dict(
type='ContrastiveHead',
loss=dict(type='mmcls.CrossEntropyLoss'),
temperature=0.07)
memory_bank = dict(type='SimpleMemory', length=8, feat_dim=2, momentum=0.5)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_npid():
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'bgr_to_rgb': True
}
alg = NPID(
backbone=backbone,
neck=neck,
head=head,
memory_bank=memory_bank,
data_preprocessor=copy.deepcopy(data_preprocessor))
fake_data = {
'inputs': [torch.randn((2, 3, 224, 224))],
'data_samples': [
SelfSupDataSample(
sample_idx=InstanceData(value=torch.randint(0, 7, (1, ))))
for _ in range(2)
]
}
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
assert fake_loss['loss'] > -1
# test extract
fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor')
assert fake_feats[0].size() == torch.Size([2, 512, 7, 7])