2022-07-18 11:06:44 +08:00

89 lines
2.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmselfsup.core import SelfSupDataSample
from mmselfsup.models.algorithms import ODC
num_classes = 5
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='ODCNeck',
in_channels=512,
hid_channels=2,
out_channels=2,
norm_cfg=dict(type='BN1d'),
with_avg_pool=True)
head = dict(
type='ClsHead',
with_avg_pool=False,
in_channels=2,
num_classes=num_classes)
loss = dict(type='CrossEntropyLoss')
memory_bank = dict(
type='ODCMemory',
length=8,
feat_dim=2,
momentum=0.5,
num_classes=num_classes,
min_cluster=2,
debug=False)
preprocess_cfg = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
}
@pytest.mark.skipif(
not torch.cuda.is_available() or platform.system() == 'Windows',
reason='CUDA is not available or Windows mem limit')
def test_odc():
with pytest.raises(AssertionError):
alg = ODC(
backbone=backbone,
neck=neck,
head=head,
loss=loss,
memory_bank=None,
preprocess_cfg=preprocess_cfg)
with pytest.raises(AssertionError):
alg = ODC(
backbone=backbone,
neck=neck,
head=None,
memory_bank=memory_bank,
preprocess_cfg=preprocess_cfg)
with pytest.raises(AssertionError):
alg = ODC(
backbone=backbone,
neck=neck,
head=head,
loss=loss,
memory_bank=memory_bank,
preprocess_cfg=preprocess_cfg)
alg = ODC(
backbone=backbone,
neck=neck,
head=head,
loss=loss,
memory_bank=memory_bank,
preprocess_cfg=preprocess_cfg)
alg.set_reweight()
fake_data = [{
'inputs': torch.randn((3, 224, 224)),
'data_sample': SelfSupDataSample()
} for _ in range(2)]
fake_out = alg(fake_data, return_loss=False)
assert hasattr(fake_out[0].prediction, 'head0')
assert fake_out[0].prediction.head0.size() == torch.Size([num_classes])