mmselfsup/tests/test_models/test_algorithms/test_byol.py

54 lines
1.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmselfsup.models.algorithms import BYOL
backbone = dict(
type='ResNet',
depth=50,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='NonLinearNeck',
in_channels=2048,
hid_channels=4,
out_channels=4,
with_bias=True,
with_last_bn=False,
with_avg_pool=True,
norm_cfg=dict(type='BN1d'))
head = dict(
type='LatentPredictHead',
predictor=dict(
type='NonLinearNeck',
in_channels=4,
hid_channels=4,
out_channels=4,
with_bias=True,
with_last_bn=False,
with_avg_pool=False,
norm_cfg=dict(type='BN1d')))
def test_byol():
with pytest.raises(AssertionError):
alg = BYOL(backbone=backbone, neck=None, head=head)
with pytest.raises(AssertionError):
alg = BYOL(backbone=backbone, neck=neck, head=None)
alg = BYOL(backbone=backbone, neck=neck, head=head)
fake_input = torch.randn((16, 3, 224, 224))
fake_backbone_out = alg.extract_feat(fake_input)
assert fake_backbone_out[0].size() == torch.Size([16, 2048, 7, 7])
with pytest.raises(AssertionError):
fake_out = alg.forward_train(fake_input)
fake_input = [
torch.randn((16, 3, 224, 224)),
torch.randn((16, 3, 224, 224))
]
fake_out = alg.forward_train(fake_input)
assert fake_out['loss'].item() > -4