mmselfsup/tests/test_models/test_algorithms/test_simsiam.py

51 lines
1.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmselfsup.models.algorithms import SimSiam
backbone = dict(
type='ResNet',
depth=50,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'),
zero_init_residual=True)
neck = dict(
type='NonLinearNeck',
in_channels=2048,
hid_channels=4,
out_channels=4,
num_layers=3,
with_last_bn_affine=False,
with_avg_pool=True,
norm_cfg=dict(type='BN1d'))
head = dict(
type='LatentPredictHead',
predictor=dict(
type='NonLinearNeck',
in_channels=4,
hid_channels=4,
out_channels=4,
with_avg_pool=False,
with_last_bn=False,
with_last_bias=True,
norm_cfg=dict(type='BN1d')))
def test_simsiam():
with pytest.raises(AssertionError):
alg = SimSiam(backbone=backbone, neck=neck, head=None)
alg = SimSiam(backbone=backbone, neck=neck, head=head)
with pytest.raises(AssertionError):
fake_input = torch.randn((16, 3, 224, 224))
alg.forward_train(fake_input)
fake_input = [
torch.randn((16, 3, 224, 224)),
torch.randn((16, 3, 224, 224))
]
fake_out = alg.forward(fake_input)
assert fake_out['loss'].item() > -1