Wangbo Zhao(黑色枷锁) da8b6c5146
[Feature] Support EVA-MAE style (#632)
* [Feature] Support EVA-MAE style

* [Feature] Refine After Review1

* [Feature] Refine After Review2 and Review3. Add ckpt links

* [Feature] Refine After Review4

* [Feature] Refine After Review5

* [Feature] Refine After Review6

* [Feature] Fix file name
2022-12-27 15:47:32 +08:00

56 lines
1.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
from unittest.mock import MagicMock
import pytest
import torch
from mmselfsup.models.algorithms import EVA
from mmselfsup.structures import SelfSupDataSample
from mmselfsup.utils import register_all_modules
register_all_modules()
backbone = dict(type='MAEViT', arch='b', patch_size=16, mask_ratio=0.75)
neck = dict(
type='MAEPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
predict_feature_dim=512,
mlp_ratio=4.,
)
loss = dict(type='CosineSimilarityLoss', shift_factor=1.0, scale_factor=1.0)
head = dict(type='MILANPretrainHead', loss=loss)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_eva():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'bgr_to_rgb': True
}
alg = EVA(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=copy.deepcopy(data_preprocessor))
target_generator = MagicMock(
return_value=(torch.ones(2, 197, 512), torch.ones(2, 197, 197)))
alg.target_generator = target_generator
fake_data = {
'inputs': [torch.randn((2, 3, 224, 224))],
'data_sample': [SelfSupDataSample() for _ in range(2)]
}
fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)