Yixiao Fang 73cd764b5f
[Feature] Support pixel reconstruction visualization (#570)
* refactor reconstruction visualization

* support simmim visualization

* fix reconstruction bug of MAE

* support visualization of MaskFeat

* refaction mae visualization demo

* add unit test

* fix lint and ut

* update

* add docs

* set random seed

* update

* update docstring

* add torch version check

* update

* rename

* update version

* update

* fix lint

* add docstring

* update docs
2022-12-06 19:45:01 +08:00

65 lines
2.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmengine.structures import InstanceData
from mmengine.utils import digit_version
from mmselfsup.models.algorithms.maskfeat import MaskFeat
from mmselfsup.structures import SelfSupDataSample
from mmselfsup.utils import register_all_modules
register_all_modules()
backbone = dict(type='MaskFeatViT', arch='b', patch_size=16)
neck = dict(
type='LinearNeck', in_channels=768, out_channels=108, with_avg_pool=False)
head = dict(
type='MaskFeatPretrainHead',
loss=dict(type='PixelReconstructionLoss', criterion='L2'))
target_generator = dict(
type='HOGGenerator', nbins=9, pool=8, gaussian_window=16)
@pytest.mark.skipif(
digit_version(torch.__version__) < digit_version('1.7.0'),
reason='torch version')
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_maskfeat():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'bgr_to_rgb': True
}
alg = MaskFeat(
backbone=backbone,
neck=neck,
head=head,
target_generator=target_generator,
data_preprocessor=copy.deepcopy(data_preprocessor))
# test forward_train
fake_data_sample = SelfSupDataSample()
fake_mask = InstanceData(value=torch.rand((14, 14)).bool())
fake_data_sample.mask = fake_mask
fake_data = {
'inputs': [torch.randn((1, 3, 224, 224))],
'data_sample': [fake_data_sample for _ in range(1)]
}
fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)
# test extraction
fake_feats = alg.extract_feat(fake_batch_inputs, fake_data_samples)
assert list(fake_feats.shape) == [1, 196, 108]
# test reconstruction
results = alg.reconstruct(fake_feats, fake_data_samples)
assert list(results.mask.value.shape) == [1, 224, 224, 3]
assert list(results.pred.value.shape) == [1, 224, 224, 3]