80 lines
2.5 KiB
Python
80 lines
2.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import logging
|
|
import tempfile
|
|
from unittest.mock import MagicMock
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmcv.parallel import MMDataParallel
|
|
from mmcv.runner import build_runner, obj_from_dict
|
|
from torch.utils.data import DataLoader, Dataset
|
|
|
|
from mmselfsup.core.hooks import MomentumUpdateHook
|
|
|
|
|
|
class ExampleDataset(Dataset):
|
|
|
|
def __getitem__(self, idx):
|
|
results = dict(img=torch.tensor([1]), img_metas=dict())
|
|
return results
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
|
|
class ExampleModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
super(ExampleModel, self).__init__()
|
|
self.test_cfg = None
|
|
self.online_net = nn.Conv2d(3, 3, 3)
|
|
self.target_net = nn.Conv2d(3, 3, 3)
|
|
self.base_momentum = 0.96
|
|
self.momentum = self.base_momentum
|
|
|
|
def forward(self, img, img_metas, test_mode=False, **kwargs):
|
|
return img
|
|
|
|
def train_step(self, data_batch, optimizer):
|
|
loss = self.forward(**data_batch)
|
|
return dict(loss=loss)
|
|
|
|
@torch.no_grad()
|
|
def _momentum_update(self):
|
|
"""Momentum update of the target network."""
|
|
for param_ol, param_tgt in zip(self.online_net.parameters(),
|
|
self.target_net.parameters()):
|
|
param_tgt.data = param_tgt.data * self.momentum + \
|
|
param_ol.data * (1. - self.momentum)
|
|
|
|
@torch.no_grad()
|
|
def momentum_update(self):
|
|
self._momentum_update()
|
|
|
|
|
|
def test_byol_hook():
|
|
test_dataset = ExampleDataset()
|
|
test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
|
|
data_loader = DataLoader(
|
|
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
|
|
|
|
runner_cfg = dict(type='EpochBasedRunner', max_epochs=2)
|
|
optim_cfg = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
|
|
|
# test MomentumUpdateHook
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model = MMDataParallel(ExampleModel())
|
|
optimizer = obj_from_dict(optim_cfg, torch.optim,
|
|
dict(params=model.parameters()))
|
|
momentum_hook = MomentumUpdateHook()
|
|
runner = build_runner(
|
|
runner_cfg,
|
|
default_args=dict(
|
|
model=model,
|
|
optimizer=optimizer,
|
|
work_dir=tmpdir,
|
|
logger=logging.getLogger()))
|
|
runner.register_hook(momentum_hook)
|
|
runner.run([data_loader], [('train', 1)])
|
|
assert runner.model.module.momentum == 0.98
|