2022-07-18 11:06:44 +08:00

48 lines
1.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmengine.data import BaseDataElement as PixelData
from mmselfsup.core import SelfSupDataSample
from mmselfsup.models.algorithms import SimMIM
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_simmim():
# model config
model_config = dict(
backbone=dict(
type='SimMIMSwinTransformer',
arch='B',
img_size=192,
stage_cfgs=dict(block_cfgs=dict(window_size=6))),
neck=dict(
type='SimMIMNeck', in_channels=128 * 2**3, encoder_stride=32),
head=dict(type='SimMIMHead', patch_size=4, encoder_in_channels=3),
preprocess_cfg={
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
})
model = SimMIM(**model_config)
# test forward_train
fake_data_sample = SelfSupDataSample()
fake_mask = PixelData(value=torch.rand((48, 48)))
fake_data_sample.mask = fake_mask
fake_data = [{
'inputs': [torch.randn((3, 192, 192))],
'data_sample': fake_data_sample
} for _ in range(2)]
outputs = model(fake_data, return_loss=True)
assert isinstance(outputs['loss'], torch.Tensor)
# test extract_feat
fake_inputs, fake_data_samples = model.preprocss_data(fake_data)
fake_feat = model.extract_feat(
inputs=fake_inputs, data_samples=fake_data_samples)
assert list(fake_feat[0].shape) == [2, 1024, 6, 6]