mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
76 lines
2.1 KiB
Python
76 lines
2.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from mmselfsup.core.data_structures.selfsup_data_sample import \
|
|
SelfSupDataSample
|
|
from mmselfsup.models.algorithms.barlowtwins import BarlowTwins
|
|
|
|
backbone = dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
in_channels=3,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='BN'))
|
|
neck = dict(
|
|
type='NonLinearNeck',
|
|
in_channels=2048,
|
|
hid_channels=2,
|
|
out_channels=2,
|
|
num_layers=3,
|
|
with_last_bn=False,
|
|
with_last_bn_affine=False,
|
|
with_avg_pool=True,
|
|
norm_cfg=dict(type='BN1d'))
|
|
head = dict(type='LatentCrossCorrelationHead', in_channels=2)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_barlowtwins():
|
|
preprocess_cfg = {
|
|
'mean': [0.5, 0.5, 0.5],
|
|
'std': [0.5, 0.5, 0.5],
|
|
'to_rgb': True
|
|
}
|
|
with pytest.raises(AssertionError):
|
|
alg = BarlowTwins(
|
|
backbone=backbone,
|
|
neck=None,
|
|
head=head,
|
|
preprocess_cfg=copy.deepcopy(preprocess_cfg))
|
|
with pytest.raises(AssertionError):
|
|
alg = BarlowTwins(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=None,
|
|
preprocess_cfg=copy.deepcopy(preprocess_cfg))
|
|
with pytest.raises(AssertionError):
|
|
alg = BarlowTwins(
|
|
backbone=None,
|
|
neck=neck,
|
|
head=head,
|
|
preprocess_cfg=copy.deepcopy(preprocess_cfg))
|
|
alg = BarlowTwins(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
preprocess_cfg=copy.deepcopy(preprocess_cfg))
|
|
|
|
fake_data = [{
|
|
'inputs': [torch.randn((3, 224, 224)),
|
|
torch.randn((3, 224, 224))],
|
|
'data_sample':
|
|
SelfSupDataSample()
|
|
} for _ in range(2)]
|
|
|
|
fake_outputs = alg(fake_data, return_loss=True)
|
|
assert isinstance(fake_outputs['loss'].item(), float)
|
|
|
|
fake_inputs, fake_data_samples = alg.preprocss_data(fake_data)
|
|
fake_feat = alg.extract_feat(
|
|
inputs=fake_inputs, data_samples=fake_data_samples)
|
|
assert list(fake_feat[0].shape) == [2, 2048, 7, 7]
|