mmselfsup/tests/test_models/test_algorithms/test_mocov3.py

58 lines
1.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmselfsup.models import MoCoV3
backbone = dict(
type='VisionTransformer',
arch='mocov3-small', # embed_dim = 384
img_size=224,
patch_size=16,
stop_grad_conv1=True)
neck = dict(
type='NonLinearNeck',
in_channels=384,
hid_channels=2,
out_channels=2,
num_layers=2,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False,
vit_backbone=True)
head = dict(
type='MoCoV3Head',
predictor=dict(
type='NonLinearNeck',
in_channels=2,
hid_channels=2,
out_channels=2,
num_layers=2,
with_bias=False,
with_last_bn=True,
with_last_bn_affine=False,
with_last_bias=False,
with_avg_pool=False),
temperature=0.2)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_mocov3():
with pytest.raises(AssertionError):
alg = MoCoV3(backbone=backbone, neck=None, head=head)
with pytest.raises(AssertionError):
alg = MoCoV3(backbone=backbone, neck=neck, head=None)
alg = MoCoV3(backbone, neck, head)
alg.init_weights()
alg.momentum_update()
fake_input = torch.randn((2, 3, 224, 224))
fake_backbone_out = alg.forward(fake_input, mode='extract')
assert fake_backbone_out[0][0].size() == torch.Size([2, 384, 14, 14])
assert fake_backbone_out[0][1].size() == torch.Size([2, 384])