mmselfsup/tests/test_models/test_algorithms/test_swav.py

56 lines
1.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmselfsup.models.algorithms import SwAV
nmb_crops = [2, 6]
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'),
zero_init_residual=True)
neck = dict(
type='SwAVNeck',
in_channels=512,
hid_channels=2,
out_channels=2,
norm_cfg=dict(type='BN1d'),
with_avg_pool=True)
head = dict(
type='SwAVHead',
feat_dim=2, # equal to neck['out_channels']
epsilon=0.05,
temperature=0.1,
num_crops=nmb_crops)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_swav():
with pytest.raises(AssertionError):
alg = SwAV(backbone=backbone, neck=neck, head=None)
with pytest.raises(AssertionError):
alg = SwAV(backbone=backbone, neck=None, head=head)
alg = SwAV(backbone=backbone, neck=neck, head=head)
fake_input = torch.randn((2, 3, 224, 224))
fake_backbone_out = alg.extract_feat(fake_input)
assert fake_backbone_out[0].size() == torch.Size([2, 512, 7, 7])
fake_input = [
torch.randn((2, 3, 224, 224)),
torch.randn((2, 3, 224, 224)),
torch.randn((2, 3, 96, 96)),
torch.randn((2, 3, 96, 96)),
torch.randn((2, 3, 96, 96)),
torch.randn((2, 3, 96, 96)),
torch.randn((2, 3, 96, 96)),
torch.randn((2, 3, 96, 96)),
]
fake_out = alg.forward_train(fake_input)
assert fake_out['loss'].item() > 0