mmselfsup/configs/benchmarks/linear_classification/imagenet/r50_last_sobel.py

77 lines
2.3 KiB
Python

_base_ = '../../../base.py'
# model settings
model = dict(
type='Classification',
pretrained=None,
with_sobel=True,
backbone=dict(
type='ResNet',
depth=50,
in_channels=2,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'),
frozen_stages=4),
head=dict(
type='ClsHead', with_avg_pool=True, in_channels=2048,
num_classes=1000))
# dataset settings
data_source_cfg = dict(
type='ImageNet',
memcached=True,
mclient_path='/mnt/lustre/share/memcached_client')
data_train_list = 'data/imagenet/meta/train_labeled.txt'
data_train_root = 'data/imagenet/train'
data_test_list = 'data/imagenet/meta/val_labeled.txt'
data_test_root = 'data/imagenet/val'
dataset_type = 'ClassificationDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
]
test_pipeline = [
dict(type='Resize', size=256),
dict(type='CenterCrop', size=224),
]
# prefetch
prefetch = False
if not prefetch:
train_pipeline.extend([dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)])
test_pipeline.extend([dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)])
data = dict(
imgs_per_gpu=32, # total 32*8=256, 8GPU linear cls
workers_per_gpu=5,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list, root=data_train_root,
**data_source_cfg),
pipeline=train_pipeline,
prefetch=prefetch),
val=dict(
type=dataset_type,
data_source=dict(
list_file=data_test_list, root=data_test_root, **data_source_cfg),
pipeline=test_pipeline,
prefetch=prefetch))
# additional hooks
custom_hooks = [
dict(
type='ValidateHook',
dataset=data['val'],
initial=True,
interval=1,
imgs_per_gpu=128,
workers_per_gpu=4,
prefetch=prefetch,
img_norm_cfg=img_norm_cfg,
eval_param=dict(topk=(1, 5)))
]
# optimizer
optimizer = dict(type='SGD', lr=30., momentum=0.9, weight_decay=0.)
# learning policy
lr_config = dict(policy='step', step=[60, 80])
checkpoint_config = dict(interval=10)
# runtime settings
total_epochs = 100