mmselfsup/tools/test.py

123 lines
3.9 KiB
Python

import argparse
import importlib
import os
import os.path as osp
import time
import mmcv
import torch
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from openselfsup.datasets import build_dataloader, build_dataset
from openselfsup.models import build_model
from openselfsup.utils import (get_root_logger, dist_forward_collect,
nondist_forward_collect, traverse_replace)
def single_gpu_test(model, data_loader):
model.eval()
func = lambda **x: model(mode='test', **x)
results = nondist_forward_collect(func, data_loader,
len(data_loader.dataset))
return results
def multi_gpu_test(model, data_loader):
model.eval()
func = lambda **x: model(mode='test', **x)
rank, world_size = get_dist_info()
results = dist_forward_collect(func, data_loader, rank,
len(data_loader.dataset))
return results
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work_dir',
type=str,
default=None,
help='the dir to save logs and models')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--port', type=int, default=29500,
help='port only works when launcher=="slurm"')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
cfg = mmcv.Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
cfg.model.pretrained = None # ensure to use checkpoint rather than pretraining
# check memcached package exists
if importlib.util.find_spec('mc') is None:
traverse_replace(cfg, 'memcached', False)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
if args.launcher == 'slurm':
cfg.dist_params['port'] = args.port
init_dist(args.launcher, **cfg.dist_params)
# logger
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, 'test_{}.log'.format(timestamp))
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# build the dataloader
dataset = build_dataset(cfg.data.val)
data_loader = build_dataloader(
dataset,
imgs_per_gpu=cfg.data.imgs_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
model = build_model(cfg.model)
load_checkpoint(model, args.checkpoint, map_location='cpu')
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader) # dict{key: np.ndarray}
rank, _ = get_dist_info()
if rank == 0:
for name, val in outputs.items():
dataset.evaluate(
torch.from_numpy(val), name, logger, topk=(1, 5))
if __name__ == '__main__':
main()