mmselfsup/configs/selfsup/_base_/datasets/imagenet_npid.py

37 lines
963 B
Python

# dataset settings
data_source = 'ImageNet'
dataset_type = 'SingleViewDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=224, scale=(0.2, 1.)),
dict(type='RandomGrayscale', p=0.2),
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.4),
dict(type='RandomHorizontalFlip'),
]
# prefetch
prefetch = False
if not prefetch:
train_pipeline.extend(
[dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg)])
# dataset summary
data = dict(
samples_per_gpu=32, # total 32*8
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
type=data_source,
data_prefix='data/imagenet/train',
ann_file='data/imagenet/meta/train.txt',
),
pipeline=train_pipeline,
prefetch=prefetch))