45 lines
1.2 KiB
Python
45 lines
1.2 KiB
Python
# dataset settings
|
|
data_source = 'ImageNet'
|
|
dataset_type = 'MultiViewDataset'
|
|
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
train_pipeline = [
|
|
dict(type='RandomResizedCrop', size=224),
|
|
dict(type='RandomHorizontalFlip'),
|
|
dict(
|
|
type='RandomAppliedTrans',
|
|
transforms=[
|
|
dict(
|
|
type='ColorJitter',
|
|
brightness=0.8,
|
|
contrast=0.8,
|
|
saturation=0.8,
|
|
hue=0.2)
|
|
],
|
|
p=0.8),
|
|
dict(type='RandomGrayscale', p=0.2),
|
|
dict(type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, p=0.5),
|
|
]
|
|
|
|
# prefetch
|
|
prefetch = False
|
|
if not prefetch:
|
|
train_pipeline.extend(
|
|
[dict(type='ToTensor'),
|
|
dict(type='Normalize', **img_norm_cfg)])
|
|
|
|
# dataset summary
|
|
data = dict(
|
|
samples_per_gpu=32, # total 32*8
|
|
workers_per_gpu=4,
|
|
train=dict(
|
|
type=dataset_type,
|
|
data_source=dict(
|
|
type=data_source,
|
|
data_prefix='data/imagenet/train',
|
|
ann_file='data/imagenet/meta/train.txt',
|
|
),
|
|
num_views=[2],
|
|
pipelines=[train_pipeline],
|
|
prefetch=prefetch,
|
|
))
|