mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
* [Feature] Add MoCo v3 (#194) * [Feature] add position embedding function * [Fature] modify nonlinear neck for vit backbone * [Feature] add mocov3 head * [Feature] modify cls_head for vit backbone * [Feature] add ViT backbone * [Feature] add mocov3 algorithm * [Docs] revise BYOL hook docstring * [Feature] add mocov3 vit small config files * [Feature] add mocov3 vit small linear eval config files * [Fix] solve conflict * [Fix] add mmcls * [Fix] fix docstring format * [Fix] fix isort * [Fix] add mmcls to runtime requirements * [Feature] remove duplicated codes * [Feature] add mocov3 related unit test * [Feature] revise position embedding function * [Feature] add UT codes * [Docs] add README.md * [Docs] add model links and results to model zoo * [Docs] fix model links * [Docs] add metafile * [Docs] modify install.md and add mmcls requirements * [Docs] modify description * [Fix] using specific arch name `mocov3-small` rather than general arch name `small` * [Fix] add mmcls * [Fix] fix arch name * [Feature] change name to `MoCoV3` * [Fix] fix unit test bug * [Feature] change `BYOLHook` name to `MomentumUpdateHook` * [Feature] change name to MoCoV3 * [Docs] modify description Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com> * [Docs] update model zoo results (#195) * Bump version to v0.6.0 (#198) * [Docs] update model zoo results * Bump version to v0.6.0 Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com>
55 lines
1.4 KiB
Python
55 lines
1.4 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import pytest
|
|
import torch
|
|
|
|
from mmselfsup.models import MoCoV3
|
|
|
|
backbone = dict(
|
|
type='VisionTransformer',
|
|
arch='mocov3-small', # embed_dim = 384
|
|
img_size=224,
|
|
patch_size=16,
|
|
stop_grad_conv1=True)
|
|
neck = dict(
|
|
type='NonLinearNeck',
|
|
in_channels=384,
|
|
hid_channels=8,
|
|
out_channels=8,
|
|
num_layers=2,
|
|
with_bias=False,
|
|
with_last_bn=True,
|
|
with_last_bn_affine=False,
|
|
with_last_bias=False,
|
|
with_avg_pool=False,
|
|
vit_backbone=True)
|
|
head = dict(
|
|
type='MoCoV3Head',
|
|
predictor=dict(
|
|
type='NonLinearNeck',
|
|
in_channels=8,
|
|
hid_channels=8,
|
|
out_channels=8,
|
|
num_layers=2,
|
|
with_bias=False,
|
|
with_last_bn=True,
|
|
with_last_bn_affine=False,
|
|
with_last_bias=False,
|
|
with_avg_pool=False),
|
|
temperature=0.2)
|
|
|
|
|
|
def test_mocov3():
|
|
with pytest.raises(AssertionError):
|
|
alg = MoCoV3(backbone=backbone, neck=None, head=head)
|
|
with pytest.raises(AssertionError):
|
|
alg = MoCoV3(backbone=backbone, neck=neck, head=None)
|
|
|
|
alg = MoCoV3(backbone, neck, head)
|
|
alg.init_weights()
|
|
alg.momentum_update()
|
|
|
|
fake_input = torch.randn((16, 3, 224, 224))
|
|
fake_backbone_out = alg.extract_feat(fake_input)
|
|
assert fake_backbone_out[0][0].size() == torch.Size([16, 384, 14, 14])
|
|
assert fake_backbone_out[0][1].size() == torch.Size([16, 384])
|