mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
62 lines
1.8 KiB
Python
62 lines
1.8 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
from mmengine.data import InstanceData
|
|
|
|
from mmselfsup.data import SelfSupDataSample
|
|
from mmselfsup.models.algorithms import DeepCluster
|
|
|
|
num_classes = 5
|
|
with_sobel = True,
|
|
backbone = dict(
|
|
type='ResNetSobel',
|
|
depth=18,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='BN'))
|
|
neck = dict(type='AvgPool2dNeck')
|
|
head = dict(
|
|
type='ClsHead',
|
|
loss=dict(type='mmcls.CrossEntropyLoss'),
|
|
with_avg_pool=False, # already has avgpool in the neck
|
|
in_channels=512,
|
|
num_classes=num_classes)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not torch.cuda.is_available() or platform.system() == 'Windows',
|
|
reason='CUDA is not available or Windows mem limit')
|
|
def test_deepcluster():
|
|
data_preprocessor = {
|
|
'mean': (123.675, 116.28, 103.53),
|
|
'std': (58.395, 57.12, 57.375),
|
|
'bgr_to_rgb': True
|
|
}
|
|
|
|
alg = DeepCluster(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
data_preprocessor=copy.deepcopy(data_preprocessor))
|
|
assert alg.num_classes == num_classes
|
|
assert hasattr(alg, 'neck')
|
|
assert hasattr(alg, 'head')
|
|
|
|
fake_data_sample = SelfSupDataSample()
|
|
clustering_label = InstanceData(clustering_label=torch.tensor([1]))
|
|
fake_data_sample.pseudo_label = clustering_label
|
|
fake_data = [{
|
|
'inputs': [torch.randn(3, 224, 224)],
|
|
'data_sample': fake_data_sample
|
|
} for _ in range(2)]
|
|
|
|
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
|
|
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
|
|
assert fake_loss['loss'] > 0
|
|
|
|
# test extract
|
|
fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor')
|
|
assert fake_feats[0].size() == torch.Size([2, 512, 7, 7])
|