78 lines
2.1 KiB
Python
78 lines
2.1 KiB
Python
_base_ = '../../base.py'
|
|
# model settings
|
|
model = dict(
|
|
type='SimCLR',
|
|
pretrained=None,
|
|
backbone=dict(
|
|
type='ResNet',
|
|
depth=50,
|
|
in_channels=3,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='SyncBN')),
|
|
neck=dict(
|
|
type='NonLinearNeckV1',
|
|
in_channels=2048,
|
|
hid_channels=2048,
|
|
out_channels=128,
|
|
with_avg_pool=True),
|
|
head=dict(type='ContrastiveHead', temperature=0.1))
|
|
# dataset settings
|
|
data_source_cfg = dict(
|
|
type='ImageNet',
|
|
memcached=True,
|
|
mclient_path='/mnt/lustre/share/memcached_client')
|
|
data_train_list = 'data/imagenet/meta/train.txt'
|
|
data_train_root = 'data/imagenet/train'
|
|
dataset_type = 'ContrastiveDataset'
|
|
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
train_pipeline = [
|
|
dict(type='RandomResizedCrop', size=224),
|
|
dict(type='RandomHorizontalFlip'),
|
|
dict(
|
|
type='RandomAppliedTrans',
|
|
transforms=[
|
|
dict(
|
|
type='ColorJitter',
|
|
brightness=0.8,
|
|
contrast=0.8,
|
|
saturation=0.8,
|
|
hue=0.2)
|
|
],
|
|
p=0.8),
|
|
dict(type='RandomGrayscale', p=0.2),
|
|
dict(
|
|
type='RandomAppliedTrans',
|
|
transforms=[
|
|
dict(
|
|
type='GaussianBlur',
|
|
sigma_min=0.1,
|
|
sigma_max=2.0,
|
|
kernel_size=23)
|
|
],
|
|
p=0.5),
|
|
dict(type='ToTensor'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
]
|
|
data = dict(
|
|
imgs_per_gpu=32, # total 32*8
|
|
workers_per_gpu=4,
|
|
train=dict(
|
|
type=dataset_type,
|
|
data_source=dict(
|
|
list_file=data_train_list, root=data_train_root,
|
|
**data_source_cfg),
|
|
pipeline=train_pipeline))
|
|
# optimizer
|
|
optimizer = dict(type='LARS', lr=0.3, weight_decay=0.000001, momentum=0.9)
|
|
# learning policy
|
|
lr_config = dict(
|
|
policy='CosineAnealing',
|
|
min_lr=0.,
|
|
warmup='linear',
|
|
warmup_iters=10,
|
|
warmup_ratio=0.01,
|
|
warmup_by_epoch=True)
|
|
checkpoint_config = dict(interval=10)
|
|
# runtime settings
|
|
total_epochs = 200
|