mmselfsup/openselfsup/datasets/loader/sampler.py

300 lines
10 KiB
Python

from __future__ import division
import math
import numpy as np
import torch
from mmcv.runner import get_dist_info
from torch.utils.data import DistributedSampler as _DistributedSampler
from torch.utils.data import Sampler
class DistributedSampler(_DistributedSampler):
def __init__(self,
dataset,
num_replicas=None,
rank=None,
shuffle=True,
replace=False):
super().__init__(dataset, num_replicas=num_replicas, rank=rank)
self.shuffle = shuffle
self.replace = replace
self.unif_sampling_flag = False
def __iter__(self):
# deterministically shuffle based on epoch
if not self.unif_sampling_flag:
self.generate_new_list()
else:
self.unif_sampling_flag = False
return iter(self.indices[self.rank * self.num_samples:(self.rank + 1) *
self.num_samples])
def generate_new_list(self):
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.epoch)
if self.replace:
indices = torch.randint(
low=0,
high=len(self.dataset),
size=(len(self.dataset), ),
generator=g).tolist()
else:
indices = torch.randperm(
len(self.dataset), generator=g).tolist()
else:
indices = torch.arange(len(self.dataset)).tolist()
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
self.indices = indices
def set_uniform_indices(self, labels, num_classes):
self.unif_sampling_flag = True
assert self.shuffle, "Using uniform sampling, the indices must be shuffled."
np.random.seed(self.epoch)
assert (len(labels) == len(self.dataset))
N = len(labels)
size_per_label = int(N / num_classes) + 1
indices = []
images_lists = [[] for i in range(num_classes)]
for i, l in enumerate(labels):
images_lists[l].append(i)
for i, l in enumerate(images_lists):
if len(l) == 0:
continue
indices.extend(
np.random.choice(
l, size_per_label, replace=(len(l) <= size_per_label)))
indices = np.array(indices)
np.random.shuffle(indices)
indices = indices[:N].astype(np.int).tolist()
# add extra samples to make it evenly divisible
assert len(indices) <= self.total_size, \
"{} vs {}".format(len(indices), self.total_size)
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size, \
"{} vs {}".format(len(indices), self.total_size)
self.indices = indices
class GroupSampler(Sampler):
def __init__(self, dataset, samples_per_gpu=1):
assert hasattr(dataset, 'flag')
self.dataset = dataset
self.samples_per_gpu = samples_per_gpu
self.flag = dataset.flag.astype(np.int64)
self.group_sizes = np.bincount(self.flag)
self.num_samples = 0
for i, size in enumerate(self.group_sizes):
self.num_samples += int(np.ceil(
size / self.samples_per_gpu)) * self.samples_per_gpu
def __iter__(self):
indices = []
for i, size in enumerate(self.group_sizes):
if size == 0:
continue
indice = np.where(self.flag == i)[0]
assert len(indice) == size
np.random.shuffle(indice)
num_extra = int(np.ceil(size / self.samples_per_gpu)
) * self.samples_per_gpu - len(indice)
indice = np.concatenate(
[indice, np.random.choice(indice, num_extra)])
indices.append(indice)
indices = np.concatenate(indices)
indices = [
indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu]
for i in np.random.permutation(
range(len(indices) // self.samples_per_gpu))
]
indices = np.concatenate(indices)
indices = indices.astype(np.int64).tolist()
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
class DistributedGroupSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
num_replicas (optional): Number of processes participating in
distributed training.
rank (optional): Rank of the current process within num_replicas.
"""
def __init__(self,
dataset,
samples_per_gpu=1,
num_replicas=None,
rank=None):
_rank, _num_replicas = get_dist_info()
if num_replicas is None:
num_replicas = _num_replicas
if rank is None:
rank = _rank
self.dataset = dataset
self.samples_per_gpu = samples_per_gpu
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
assert hasattr(self.dataset, 'flag')
self.flag = self.dataset.flag
self.group_sizes = np.bincount(self.flag)
self.num_samples = 0
for i, j in enumerate(self.group_sizes):
self.num_samples += int(
math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu /
self.num_replicas)) * self.samples_per_gpu
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
for i, size in enumerate(self.group_sizes):
if size > 0:
indice = np.where(self.flag == i)[0]
assert len(indice) == size
indice = indice[list(torch.randperm(int(size),
generator=g))].tolist()
extra = int(
math.ceil(
size * 1.0 / self.samples_per_gpu / self.num_replicas)
) * self.samples_per_gpu * self.num_replicas - len(indice)
# pad indice
tmp = indice.copy()
for _ in range(extra // size):
indice.extend(tmp)
indice.extend(tmp[:extra % size])
indices.extend(indice)
assert len(indices) == self.total_size
indices = [
indices[j] for i in list(
torch.randperm(
len(indices) // self.samples_per_gpu, generator=g))
for j in range(i * self.samples_per_gpu, (i + 1) *
self.samples_per_gpu)
]
# subsample
offset = self.num_samples * self.rank
indices = indices[offset:offset + self.num_samples]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch
class DistributedGivenIterationSampler(Sampler):
def __init__(self,
dataset,
total_iter,
batch_size,
num_replicas=None,
rank=None,
last_iter=-1):
rank, world_size = get_dist_info()
assert rank < world_size
self.dataset = dataset
self.total_iter = total_iter
self.batch_size = batch_size
self.world_size = world_size
self.rank = rank
self.last_iter = last_iter
self.total_size = self.total_iter * self.batch_size
self.indices = self.gen_new_list()
def __iter__(self):
return iter(self.indices[(self.last_iter + 1) * self.batch_size:])
def set_uniform_indices(self, labels, num_classes):
np.random.seed(0)
assert (len(labels) == len(self.dataset))
N = len(labels)
size_per_label = int(N / num_classes) + 1
indices = []
images_lists = [[] for i in range(num_classes)]
for i, l in enumerate(labels):
images_lists[l].append(i)
for i, l in enumerate(images_lists):
if len(l) == 0:
continue
indices.extend(
np.random.choice(
l, size_per_label, replace=(len(l) <= size_per_label)))
indices = np.array(indices)
np.random.shuffle(indices)
indices = indices[:N].astype(np.int)
# repeat
all_size = self.total_size * self.world_size
indices = indices[:all_size]
num_repeat = (all_size - 1) // indices.shape[0] + 1
indices = np.tile(indices, num_repeat)
indices = indices[:all_size]
np.random.shuffle(indices)
# slice
beg = self.total_size * self.rank
indices = indices[beg:beg + self.total_size]
assert len(indices) == self.total_size
# set
self.indices = indices
def gen_new_list(self):
# each process shuffle all list with same seed, and pick one piece according to rank
np.random.seed(0)
all_size = self.total_size * self.world_size
indices = np.arange(len(self.dataset))
indices = indices[:all_size]
num_repeat = (all_size - 1) // indices.shape[0] + 1
indices = np.tile(indices, num_repeat)
indices = indices[:all_size]
np.random.shuffle(indices)
beg = self.total_size * self.rank
indices = indices[beg:beg + self.total_size]
assert len(indices) == self.total_size
return indices
def __len__(self):
# note here we do not take last iter into consideration, since __len__
# should only be used for displaying, the correct remaining size is
# handled by dataloader
#return self.total_size - (self.last_iter+1)*self.batch_size
return self.total_size
def set_epoch(self, epoch):
pass