OpenMMLab Self-Supervised Learning Toolbox and Benchmark
 
 
 
Go to file
Yixiao Fang bbdf670d00
Bump version to v0.9.1 (#322)
* [Fix]: Set qkv bias to False for cae and True for mae (#303)

* [Fix]: Add mmcls transformer layer choice

* [Fix]: Fix transformer encoder layer bug

* [Fix]: Change UT of cae

* [Feature]: Change the file name of cosine annealing hook (#304)

* [Feature]: Change cosine annealing hook file name

* [Feature]: Add UT for cosine annealing hook

* [Fix]: Fix lint

* read tutorials and fix typo (#308)

* [Fix] fix config errors in MAE (#307)

* update readthedocs algorithm readme (#310)

* [Docs] Replace markdownlint with mdformat (#311)

* Replace markdownlint with mdformat to avoid installing ruby

* fix typo

* add 'ba' to codespell ignore-words-list

* Configure Myst-parser to parse anchor tag (#309)

* [Docs] rewrite install.md (#317)

* rewrite the install.md

* add faq.md

* fix lint

* add FAQ to README

* add Chinese version

* fix typo

* fix format

* remove modification

* fix format

* [Docs] refine README.md file (#318)

* refine README.md file

* fix lint

* format language button

* rename getting_started.md

* revise index.rst

* add model_zoo.md to index.rst

* fix lint

* refine readme

Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com>

* [Enhance] update byol models and results (#319)

* Update version information (#321)

Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com>
Co-authored-by: Yi Lu <21515006@zju.edu.cn>
Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com>
Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com>
2022-06-01 09:59:05 +08:00
.github Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
configs Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
demo Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
docker [Feature]: Add docs and docker 2021-12-15 19:06:36 +08:00
docs Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
mmselfsup Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
requirements Bump version to v0.9.0 (#299) 2022-04-29 20:01:30 +08:00
resources [Docs] add xiaozhushou and selfsup wexin qrcode (#133) 2021-12-16 13:18:45 +08:00
tests Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
tools Bump version to v0.9.0 (#299) 2022-04-29 20:01:30 +08:00
.gitignore Bump version to v0.9.0 (#299) 2022-04-29 20:01:30 +08:00
.pre-commit-config.yaml Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
.readthedocs.yml [Refactor] refactor msic files 2021-12-15 18:51:33 +08:00
.style.yapf upload code 2020-06-16 00:05:18 +08:00
LICENSE Create LICENSE 2020-06-16 00:09:08 +08:00
MANIFEST.in [Enhance] enhance MIM function (#152) 2021-12-17 16:39:03 +08:00
README.md Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
README_zh-CN.md Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
model-index.yml Bump version to v0.9.0 (#299) 2022-04-29 20:01:30 +08:00
requirements.txt upload code 2020-06-16 00:05:18 +08:00
setup.cfg Bump version to v0.9.1 (#322) 2022-06-01 09:59:05 +08:00
setup.py [Fix] Deprecate the support for "python setup.py test" (#174) 2022-01-14 13:48:24 +08:00

README.md

English | 简体中文

Introduction

MMSelfSup is an open source self-supervised representation learning toolbox based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.5 or higher.

Major features

  • Methods All in One

    MMSelfsup provides state-of-the-art methods in self-supervised learning. For comprehensive comparison in all benchmarks, most of the pre-training methods are under the same setting.

  • Modular Design

    MMSelfSup follows a similar code architecture of OpenMMLab projects with modular design, which is flexible and convenient for users to build their own algorithms.

  • Standardized Benchmarks

    MMSelfSup standardizes the benchmarks including logistic regression, SVM / Low-shot SVM from linearly probed features, semi-supervised classification, object detection and semantic segmentation.

  • Compatibility

    Since MMSelfSup adopts similar design of modulars and interfaces as those in other OpenMMLab projects, it supports smooth evaluation on downstream tasks with other OpenMMLab projects like object detection and segmentation.

What's New

MMSelfSup v0.9.1 was released in 31/05/2022.

Highlights of the new version:

  • Update BYOL model and results
  • Refine some documentation

Please refer to changelog.md for details and release history.

Differences between MMSelfSup and OpenSelfSup codebases can be found in compatibility.md.

Installation

MMSelfSup depends on PyTorch, MMCV and MMClassification.

Please refer to install.md for more detailed instruction.

Get Started

Please refer to prepare_data.md for dataset preparation and get_started.md for the basic usage of MMSelfSup.

We also provides tutorials for more details:

Besides, we provide colab tutorial for basic usage.

Please refer to FAQ for frequently asked questions.

Model Zoo

Please refer to model_zoo.md for a comprehensive set of pre-trained models and benchmarks.

Supported algorithms:

More algorithms are in our plan.

Benchmark

Benchmarks Setting
ImageNet Linear Classification (Multi-head) Goyal2019
ImageNet Linear Classification (Last)
ImageNet Semi-Sup Classification
Places205 Linear Classification (Multi-head) Goyal2019
iNaturalist2018 Linear Classification (Multi-head) Goyal2019
PASCAL VOC07 SVM Goyal2019
PASCAL VOC07 Low-shot SVM Goyal2019
PASCAL VOC07+12 Object Detection MoCo
COCO17 Object Detection MoCo
Cityscapes Segmentation MMSeg
PASCAL VOC12 Aug Segmentation MMSeg

Contributing

We appreciate all contributions improving MMSelfSup. Please refer to CONTRIBUTING.md for more details about the contributing guideline.

Acknowledgement

MMSelfSup is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new algorithms.

MMSelfSup originates from OpenSelfSup, and we appreciate all early contributions made to OpenSelfSup. A few contributors are listed here: Xiaohang Zhan (@XiaohangZhan), Jiahao Xie (@Jiahao000), Enze Xie (@xieenze), Xiangxiang Chu (@cxxgtxy), Zijian He (@scnuhealthy).

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@misc{mmselfsup2021,
    title={{MMSelfSup}: OpenMMLab Self-Supervised Learning Toolbox and Benchmark},
    author={MMSelfSup Contributors},
    howpublished={\url{https://github.com/open-mmlab/mmselfsup}},
    year={2021}
}

License

This project is released under the Apache 2.0 license.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM installs OpenMMLab packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
  • MMDeploy: OpenMMLab model deployment framework.