49 lines
1.0 KiB
Python
49 lines
1.0 KiB
Python
_base_ = [
|
|
'../_base_/models/cae.py',
|
|
'../_base_/datasets/imagenet_cae.py',
|
|
'../_base_/schedules/adamw_coslr-200e_in1k.py',
|
|
'../_base_/default_runtime.py',
|
|
]
|
|
|
|
# dataset
|
|
data = dict(samples_per_gpu=64, workers_per_gpu=8)
|
|
|
|
# optimizer
|
|
optimizer = dict(
|
|
lr=1.5e-3,
|
|
paramwise_options={
|
|
'norm': dict(weight_decay=0.),
|
|
'bias': dict(weight_decay=0.),
|
|
'gamma': dict(weight_decay=0.)
|
|
},
|
|
betas=(0.9, 0.999))
|
|
|
|
# learning policy
|
|
lr_config = dict(
|
|
policy='StepFixCosineAnnealing',
|
|
min_lr=1e-5,
|
|
warmup='linear',
|
|
warmup_iters=10,
|
|
warmup_ratio=1e-4,
|
|
warmup_by_epoch=True,
|
|
by_epoch=False)
|
|
|
|
# schedule
|
|
runner = dict(max_epochs=300)
|
|
|
|
# clip gradient
|
|
optimizer_config = dict(grad_clip=dict(max_norm=3.0))
|
|
|
|
# mixed precision
|
|
fp16 = dict(loss_scale='dynamic')
|
|
|
|
# runtime
|
|
checkpoint_config = dict(interval=1, max_keep_ckpts=2, out_dir='')
|
|
persistent_workers = True
|
|
log_config = dict(
|
|
interval=100, hooks=[
|
|
dict(type='TextLoggerHook'),
|
|
])
|
|
|
|
find_unused_parameters = True
|