3.4 KiB
MAE
Abstract
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3× or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pretraining and shows promising scaling behavior.

Models and Benchmarks
Here, we report the results of the model, which is pre-trained on ImageNet-1k for 400 epochs, the details are below:
Backbone | Pre-train epoch | Fine-tuning Top-1 | Pre-train Config | Fine-tuning Config | Download |
---|---|---|---|---|---|
ViT-B/16 | 400 | 83.1 | config | config | model | log |
Citation
@article{He2021MaskedAA,
title={Masked Autoencoders Are Scalable Vision Learners},
author={Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and
Piotr Doll'ar and Ross B. Girshick},
journal={ArXiv},
year={2021}
}