mmselfsup/tools/analysis_tools/visualize_tsne.py

242 lines
9.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import time
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import torch
from mmcv import Config, DictAction
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from sklearn.manifold import TSNE
from mmselfsup.apis import set_random_seed
from mmselfsup.datasets import build_dataloader, build_dataset
from mmselfsup.models import build_algorithm
from mmselfsup.models.utils import ExtractProcess
from mmselfsup.utils import get_root_logger
def parse_args():
parser = argparse.ArgumentParser(description='t-SNE visualization')
parser.add_argument('config', help='train config file path')
parser.add_argument('--checkpoint', default=None, help='checkpoint file')
parser.add_argument(
'--work_dir', type=str, default=None, help='the dir to save results')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument(
'--dataset_config',
default='configs/benchmarks/classification/tsne_imagenet.py',
help='extract dataset config file path')
parser.add_argument(
'--layer_ind',
type=str,
help='layer indices, separated by comma, e.g., "0,1,2,3,4"')
parser.add_argument(
'--max_num_class',
type=int,
default=20,
help='the maximum number of classes to apply t-SNE algorithms, now the'
'function supports maximum 20 classes')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
# t-SNE settings
parser.add_argument(
'--n_components', type=int, default=2, help='the dimension of results')
parser.add_argument(
'--perplexity',
type=float,
default=30.0,
help='The perplexity is related to the number of nearest neighbors'
'that is used in other manifold learning algorithms.')
parser.add_argument(
'--early_exaggeration',
type=float,
default=12.0,
help='Controls how tight natural clusters in the original space are in'
'the embedded space and how much space will be between them.')
parser.add_argument(
'--learning_rate',
type=float,
default=200.0,
help='The learning rate for t-SNE is usually in the range'
'[10.0, 1000.0]. If the learning rate is too high, the data may look'
'like a ball with any point approximately equidistant from its nearest'
'neighbours. If the learning rate is too low, most points may look'
'compressed in a dense cloud with few outliers.')
parser.add_argument(
'--n_iter',
type=int,
default=1000,
help='Maximum number of iterations for the optimization. Should be at'
'least 250.')
parser.add_argument(
'--n_iter_without_progress',
type=int,
default=300,
help='Maximum number of iterations without progress before we abort'
'the optimization')
parser.add_argument(
'--init', type=str, default='random', help='The init method')
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
work_type = args.config.split('/')[1]
cfg.work_dir = osp.join('./work_dirs', work_type,
osp.splitext(osp.basename(args.config))[0])
# get out_indices from args
layer_ind = [int(idx) for idx in args.layer_ind.split(',')]
cfg.model.backbone.out_indices = layer_ind
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# create work_dir and init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
tsne_work_dir = osp.join(cfg.work_dir, f'tsne_{timestamp}/')
mmcv.mkdir_or_exist(osp.abspath(tsne_work_dir))
log_file = osp.join(tsne_work_dir, 'extract.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# set random seeds
if args.seed is not None:
logger.info(f'Set random seed to {args.seed}, '
f'deterministic: {args.deterministic}')
set_random_seed(args.seed, deterministic=args.deterministic)
# build the dataloader
dataset_cfg = mmcv.Config.fromfile(args.dataset_config)
dataset = build_dataset(dataset_cfg.data.extract)
# compress dataset, select that the label is less then max_num_class
tmp_infos = []
for i in range(len(dataset)):
if dataset.data_source.data_infos[i]['gt_label'] < args.max_num_class:
tmp_infos.append(dataset.data_source.data_infos[i])
dataset.data_source.data_infos = tmp_infos
logger.info(f'Apply t-SNE to visualize {len(dataset)} samples.')
data_loader = build_dataloader(
dataset,
imgs_per_gpu=dataset_cfg.data.imgs_per_gpu,
workers_per_gpu=dataset_cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model
model = build_algorithm(cfg.model)
model.init_weights()
# model is determined in this priority: init_cfg > checkpoint > random
if getattr(cfg.model.backbone.init_cfg, 'type', None) == 'Pretrained':
logger.info(
f'Use pretrained model: '
f'{cfg.model.backbone.init_cfg.checkpoint} to extract features')
elif args.checkpoint is not None:
logger.info(f'Use checkpoint: {args.checkpoint} to extract features')
load_checkpoint(model, args.checkpoint, map_location='cpu')
else:
logger.info('No pretrained or checkpoint is given, use random init.')
if not distributed:
model = MMDataParallel(model, device_ids=[0])
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
# build extraction processor and run
extractor = ExtractProcess(
pool_type='specified', backbone='resnet50', layer_indices=layer_ind)
features = extractor.extract(model, data_loader, distributed=distributed)
labels = dataset.data_source.get_gt_labels()
# save features
mmcv.mkdir_or_exist(f'{tsne_work_dir}features/')
logger.info(f'Save features to {tsne_work_dir}features/')
if distributed:
rank, _ = get_dist_info()
if rank == 0:
for key, val in features.items():
output_file = \
f'{tsne_work_dir}features/{dataset_cfg.name}_{key}.npy'
np.save(output_file, val)
else:
for key, val in features.items():
output_file = \
f'{tsne_work_dir}features/{dataset_cfg.name}_{key}.npy'
np.save(output_file, val)
# build t-SNE model
tsne_model = TSNE(
n_components=args.n_components,
perplexity=args.perplexity,
early_exaggeration=args.early_exaggeration,
learning_rate=args.learning_rate,
n_iter=args.n_iter,
n_iter_without_progress=args.n_iter_without_progress,
init=args.init)
# run and get results
mmcv.mkdir_or_exist(f'{tsne_work_dir}saved_pictures/')
logger.info('Running t-SNE......')
for key, val in features.items():
result = tsne_model.fit_transform(val)
res_min, res_max = result.min(0), result.max(0)
res_norm = (result - res_min) / (res_max - res_min)
plt.figure(figsize=(10, 10))
plt.scatter(
res_norm[:, 0],
res_norm[:, 1],
alpha=1.0,
s=15,
c=labels,
cmap='tab20')
plt.savefig(f'{tsne_work_dir}saved_pictures/{key}.png')
logger.info(f'Saved results to {tsne_work_dir}saved_pictures/')
if __name__ == '__main__':
main()