242 lines
9.1 KiB
Python
242 lines
9.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
import time
|
|
|
|
import matplotlib.pyplot as plt
|
|
import mmcv
|
|
import numpy as np
|
|
import torch
|
|
from mmcv import Config, DictAction
|
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
|
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
|
|
from sklearn.manifold import TSNE
|
|
|
|
from mmselfsup.apis import set_random_seed
|
|
from mmselfsup.datasets import build_dataloader, build_dataset
|
|
from mmselfsup.models import build_algorithm
|
|
from mmselfsup.models.utils import ExtractProcess
|
|
from mmselfsup.utils import get_root_logger
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='t-SNE visualization')
|
|
parser.add_argument('config', help='train config file path')
|
|
parser.add_argument('--checkpoint', default=None, help='checkpoint file')
|
|
parser.add_argument(
|
|
'--work_dir', type=str, default=None, help='the dir to save results')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='job launcher')
|
|
parser.add_argument(
|
|
'--dataset_config',
|
|
default='configs/benchmarks/classification/tsne_imagenet.py',
|
|
help='extract dataset config file path')
|
|
parser.add_argument(
|
|
'--layer_ind',
|
|
type=str,
|
|
help='layer indices, separated by comma, e.g., "0,1,2,3,4"')
|
|
parser.add_argument(
|
|
'--max_num_class',
|
|
type=int,
|
|
default=20,
|
|
help='the maximum number of classes to apply t-SNE algorithms, now the'
|
|
'function supports maximum 20 classes')
|
|
parser.add_argument('--seed', type=int, default=0, help='random seed')
|
|
parser.add_argument(
|
|
'--deterministic',
|
|
action='store_true',
|
|
help='whether to set deterministic options for CUDNN backend.')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
|
|
# t-SNE settings
|
|
parser.add_argument(
|
|
'--n_components', type=int, default=2, help='the dimension of results')
|
|
parser.add_argument(
|
|
'--perplexity',
|
|
type=float,
|
|
default=30.0,
|
|
help='The perplexity is related to the number of nearest neighbors'
|
|
'that is used in other manifold learning algorithms.')
|
|
parser.add_argument(
|
|
'--early_exaggeration',
|
|
type=float,
|
|
default=12.0,
|
|
help='Controls how tight natural clusters in the original space are in'
|
|
'the embedded space and how much space will be between them.')
|
|
parser.add_argument(
|
|
'--learning_rate',
|
|
type=float,
|
|
default=200.0,
|
|
help='The learning rate for t-SNE is usually in the range'
|
|
'[10.0, 1000.0]. If the learning rate is too high, the data may look'
|
|
'like a ball with any point approximately equidistant from its nearest'
|
|
'neighbours. If the learning rate is too low, most points may look'
|
|
'compressed in a dense cloud with few outliers.')
|
|
parser.add_argument(
|
|
'--n_iter',
|
|
type=int,
|
|
default=1000,
|
|
help='Maximum number of iterations for the optimization. Should be at'
|
|
'least 250.')
|
|
parser.add_argument(
|
|
'--n_iter_without_progress',
|
|
type=int,
|
|
default=300,
|
|
help='Maximum number of iterations without progress before we abort'
|
|
'the optimization')
|
|
parser.add_argument(
|
|
'--init', type=str, default='random', help='The init method')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
# set cudnn_benchmark
|
|
if cfg.get('cudnn_benchmark', False):
|
|
torch.backends.cudnn.benchmark = True
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
cfg.work_dir = args.work_dir
|
|
elif cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
work_type = args.config.split('/')[1]
|
|
cfg.work_dir = osp.join('./work_dirs', work_type,
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
|
|
# get out_indices from args
|
|
layer_ind = [int(idx) for idx in args.layer_ind.split(',')]
|
|
cfg.model.backbone.out_indices = layer_ind
|
|
|
|
# init distributed env first, since logger depends on the dist info.
|
|
if args.launcher == 'none':
|
|
distributed = False
|
|
else:
|
|
distributed = True
|
|
init_dist(args.launcher, **cfg.dist_params)
|
|
|
|
# create work_dir and init the logger before other steps
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
tsne_work_dir = osp.join(cfg.work_dir, f'tsne_{timestamp}/')
|
|
mmcv.mkdir_or_exist(osp.abspath(tsne_work_dir))
|
|
log_file = osp.join(tsne_work_dir, 'extract.log')
|
|
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
|
|
|
|
# set random seeds
|
|
if args.seed is not None:
|
|
logger.info(f'Set random seed to {args.seed}, '
|
|
f'deterministic: {args.deterministic}')
|
|
set_random_seed(args.seed, deterministic=args.deterministic)
|
|
|
|
# build the dataloader
|
|
dataset_cfg = mmcv.Config.fromfile(args.dataset_config)
|
|
dataset = build_dataset(dataset_cfg.data.extract)
|
|
# compress dataset, select that the label is less then max_num_class
|
|
tmp_infos = []
|
|
for i in range(len(dataset)):
|
|
if dataset.data_source.data_infos[i]['gt_label'] < args.max_num_class:
|
|
tmp_infos.append(dataset.data_source.data_infos[i])
|
|
dataset.data_source.data_infos = tmp_infos
|
|
logger.info(f'Apply t-SNE to visualize {len(dataset)} samples.')
|
|
|
|
data_loader = build_dataloader(
|
|
dataset,
|
|
imgs_per_gpu=dataset_cfg.data.imgs_per_gpu,
|
|
workers_per_gpu=dataset_cfg.data.workers_per_gpu,
|
|
dist=distributed,
|
|
shuffle=False)
|
|
|
|
# build the model
|
|
model = build_algorithm(cfg.model)
|
|
model.init_weights()
|
|
|
|
# model is determined in this priority: init_cfg > checkpoint > random
|
|
if getattr(cfg.model.backbone.init_cfg, 'type', None) == 'Pretrained':
|
|
logger.info(
|
|
f'Use pretrained model: '
|
|
f'{cfg.model.backbone.init_cfg.checkpoint} to extract features')
|
|
elif args.checkpoint is not None:
|
|
logger.info(f'Use checkpoint: {args.checkpoint} to extract features')
|
|
load_checkpoint(model, args.checkpoint, map_location='cpu')
|
|
else:
|
|
logger.info('No pretrained or checkpoint is given, use random init.')
|
|
|
|
if not distributed:
|
|
model = MMDataParallel(model, device_ids=[0])
|
|
else:
|
|
model = MMDistributedDataParallel(
|
|
model.cuda(),
|
|
device_ids=[torch.cuda.current_device()],
|
|
broadcast_buffers=False)
|
|
|
|
# build extraction processor and run
|
|
extractor = ExtractProcess(
|
|
pool_type='specified', backbone='resnet50', layer_indices=layer_ind)
|
|
features = extractor.extract(model, data_loader, distributed=distributed)
|
|
labels = dataset.data_source.get_gt_labels()
|
|
|
|
# save features
|
|
mmcv.mkdir_or_exist(f'{tsne_work_dir}features/')
|
|
logger.info(f'Save features to {tsne_work_dir}features/')
|
|
if distributed:
|
|
rank, _ = get_dist_info()
|
|
if rank == 0:
|
|
for key, val in features.items():
|
|
output_file = \
|
|
f'{tsne_work_dir}features/{dataset_cfg.name}_{key}.npy'
|
|
np.save(output_file, val)
|
|
else:
|
|
for key, val in features.items():
|
|
output_file = \
|
|
f'{tsne_work_dir}features/{dataset_cfg.name}_{key}.npy'
|
|
np.save(output_file, val)
|
|
|
|
# build t-SNE model
|
|
tsne_model = TSNE(
|
|
n_components=args.n_components,
|
|
perplexity=args.perplexity,
|
|
early_exaggeration=args.early_exaggeration,
|
|
learning_rate=args.learning_rate,
|
|
n_iter=args.n_iter,
|
|
n_iter_without_progress=args.n_iter_without_progress,
|
|
init=args.init)
|
|
|
|
# run and get results
|
|
mmcv.mkdir_or_exist(f'{tsne_work_dir}saved_pictures/')
|
|
logger.info('Running t-SNE......')
|
|
for key, val in features.items():
|
|
result = tsne_model.fit_transform(val)
|
|
res_min, res_max = result.min(0), result.max(0)
|
|
res_norm = (result - res_min) / (res_max - res_min)
|
|
plt.figure(figsize=(10, 10))
|
|
plt.scatter(
|
|
res_norm[:, 0],
|
|
res_norm[:, 1],
|
|
alpha=1.0,
|
|
s=15,
|
|
c=labels,
|
|
cmap='tab20')
|
|
plt.savefig(f'{tsne_work_dir}saved_pictures/{key}.png')
|
|
logger.info(f'Saved results to {tsne_work_dir}saved_pictures/')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|