mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
* [Refactor]: Refactor data flow * [Fix]: Change data sample to data samples * [Fix]: Change batch_inputs to inputs * [Fix]: Fix lint and UT * [Fix]: Fix UT * [Fix]: Fix lint * [Fix]: Fix docstring * [Fix]: Fix UT * [Refactor]: Add assert in data preprocessor * [Fix]: Fix lint
64 lines
1.7 KiB
Python
64 lines
1.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
from mmengine.structures import InstanceData
|
|
|
|
from mmselfsup.models.algorithms import CAE
|
|
from mmselfsup.structures import SelfSupDataSample
|
|
from mmselfsup.utils import register_all_modules
|
|
|
|
register_all_modules()
|
|
|
|
# model settings
|
|
backbone = dict(type='CAEViT', arch='b', patch_size=16, init_values=0.1)
|
|
neck = dict(
|
|
type='CAENeck',
|
|
patch_size=16,
|
|
embed_dims=768,
|
|
num_heads=12,
|
|
regressor_depth=4,
|
|
decoder_depth=4,
|
|
mlp_ratio=4,
|
|
init_values=0.1,
|
|
)
|
|
head = dict(
|
|
type='CAEHead',
|
|
tokenizer_path='cae_ckpt/encoder_stat_dict.pth',
|
|
loss=dict(type='CAELoss', lambd=2))
|
|
|
|
data_preprocessor = dict(
|
|
type='mmselfsup.CAEDataPreprocessor',
|
|
mean=[124, 117, 104],
|
|
std=[59, 58, 58],
|
|
bgr_to_rgb=True)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_cae():
|
|
model = CAE(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
data_preprocessor=data_preprocessor)
|
|
# model.init_weights()
|
|
|
|
fake_img = torch.rand((1, 3, 224, 224))
|
|
fake_target_img = torch.rand((1, 3, 112, 112))
|
|
fake_mask = torch.zeros((196)).bool()
|
|
fake_mask[75:150] = 1
|
|
fake_data_sample = SelfSupDataSample()
|
|
fake_mask = InstanceData(value=fake_mask)
|
|
fake_data_sample.mask = fake_mask
|
|
fake_data_sample = [fake_data_sample]
|
|
|
|
fake_data = {
|
|
'inputs': [fake_img, fake_target_img],
|
|
'data_sample': fake_data_sample
|
|
}
|
|
|
|
fake_batch_inputs, fake_data_samples = model.data_preprocessor(fake_data)
|
|
fake_outputs = model(fake_batch_inputs, fake_data_samples, mode='loss')
|
|
assert isinstance(fake_outputs['loss'].item(), float)
|