RenQin 41747f73c7 [Refactor]: refactor MAE visualization (#471)
* [Refactor]: refactor MAE visualization

* [Fix]: fix lint

* [Refactor]: refactor MAE visualization

* [Feature]: add mae_visualization.py

* [UT]: add unit test

* [Refactor]: move mae_visualization.py to tools/analysis_tools

* [Docs]: Add the purpose of the function unpatchify()

* [Fix]: fix lint
2022-11-03 16:09:36 +08:00

57 lines
1.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmselfsup.models.algorithms.mae import MAE
from mmselfsup.structures import SelfSupDataSample
from mmselfsup.utils import register_all_modules
register_all_modules()
backbone = dict(type='MAEViT', arch='b', patch_size=16, mask_ratio=0.75)
neck = dict(
type='MAEPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.,
)
loss = dict(type='MAEReconstructionLoss')
head = dict(type='MAEPretrainHead', norm_pix=False, patch_size=16, loss=loss)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_mae():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'bgr_to_rgb': True
}
alg = MAE(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=copy.deepcopy(data_preprocessor))
fake_data = {
'inputs': [torch.randn((2, 3, 224, 224))],
'data_sample': [SelfSupDataSample() for _ in range(2)]
}
fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)
fake_feats = alg(fake_batch_inputs, fake_data_samples, mode='tensor')
assert list(fake_feats.shape) == [2, 196, 768]
results = alg(fake_batch_inputs, fake_data_samples, mode='predict')
assert list(results.mask.value.shape) == [2, 224, 224, 3]
assert list(results.pred.value.shape) == [2, 224, 224, 3]