mmselfsup/configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-cosl...

71 lines
1.8 KiB
Python

_base_ = ['vit-base-p16_ft-8xb128-coslr-100e_in1k.py']
# model
model = dict(backbone=dict(use_window=True, init_values=0.1, qkv_bias=False))
# optimizer
optimizer = dict(lr=8e-3)
# learning policy
lr_config = dict(warmup_iters=5)
# dataset
custom_imports = dict(imports='mmcls.datasets', allow_failed_imports=False)
preprocess_cfg = dict(
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
to_rgb=True,
)
bgr_mean = preprocess_cfg['pixel_mean'][::-1]
bgr_std = preprocess_cfg['pixel_std'][::-1]
# train pipeline
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='mmcls.RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='mmcls.RandAugment',
policies={{_base_.rand_increasing_policies}},
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(
pad_val=[round(x) for x in bgr_mean], interpolation='bicubic')),
dict(
type='mmcls.RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=bgr_mean,
fill_std=bgr_std),
dict(type='PackSelfSupInputs', algorithm_keys=['gt_label']),
]
# test pipeline
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='mmcls.ResizeEdge',
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackSelfSupInputs', algorithm_keys=['gt_label']),
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
samples_per_gpu=128)
find_unused_parameters = True