mmselfsup/configs/selfsup/moco/r50_v2_simclr_neck.py

77 lines
2.1 KiB
Python

_base_ = '../../base.py'
# model settings
model = dict(
type='MOCO',
pretrained=None,
queue_len=65536,
feat_dim=128,
momentum=0.999,
backbone=dict(
type='ResNet',
depth=50,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN')),
neck=dict(
type='NonLinearNeckSimCLR', # SimCLR non-linear neck
in_channels=2048,
hid_channels=2048,
out_channels=128,
num_layers=2,
with_avg_pool=True),
head=dict(type='ContrastiveHead', temperature=0.2))
# dataset settings
data_source_cfg = dict(
type='ImageNet',
memcached=True,
mclient_path='/mnt/lustre/share/memcached_client')
data_train_list = 'data/imagenet/meta/train.txt'
data_train_root = 'data/imagenet/train'
dataset_type = 'ContrastiveDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=224, scale=(0.2, 1.)),
dict(
type='RandomAppliedTrans',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.4)
],
p=0.8),
dict(type='RandomGrayscale', p=0.2),
dict(
type='RandomAppliedTrans',
transforms=[
dict(
type='GaussianBlur',
sigma_min=0.1,
sigma_max=2.0,
kernel_size=23)
],
p=0.5),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
]
data = dict(
imgs_per_gpu=32, # total 32*8=256
workers_per_gpu=4,
drop_last=True,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list, root=data_train_root,
**data_source_cfg),
pipeline=train_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.03, weight_decay=0.0001, momentum=0.9)
# learning policy
lr_config = dict(policy='CosineAnealing', min_lr=0.)
checkpoint_config = dict(interval=10)
# runtime settings
total_epochs = 200