mmselfsup/docs/MODEL_ZOO.md

14 KiB

Model Zoo

MethodConfigRemarksDownload link
ImageNet-torchvisionimagenet_r50-21352794.pth
Random-kaimingrandom_r50-5d0fa71b.pth
Relative-Locselfsup/relative_loc/r50.pydefault
Rotation-Predselfsup/rotation_pred/r50.pydefaultrotation_r50-cfab8ebb.pth
DeepClusterselfsup/deepcluster/r50.pydefaultdeepcluster_r50-bb8681e2.pth
NPIDselfsup/npid/r50.pydefaultnpid_r50-dec3df0c.pth
ODCselfsup/odc/r50_v1.pydefaultodc_r50_v1-5af5dd0c.pth
MoCoselfsup/moco/r50_v1.pydefaultmoco_r50_v1-4ad89b5c.pth
MoCo v2selfsup/moco/r50_v2.pydefaultmoco_r50_v2-58f10cfe.pth
selfsup/moco/r50_v2.py-> SimCLR neck
moco_r50_v2_simclr_neck-70379356.pth
SimCLRselfsup/simclr/r50_bs256_ep200.pydefaultsimclr_r50_bs256_ep200-4577e9a6.pth
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py-> MoCo v2 necksimclr_r50_bs256_ep200_mocov2_neck-0d6e5ff2.pth
BYOLselfsup/byol/r50.pydefault

Benchmarks

VOC07 SVM & SVM Low-shot

MethodConfigRemarksBest layerVOC07 SVMImageNet (Multi)
124816326496
ImageNet-torchvisionfeat587.1752.9963.5573.778.7981.7683.7585.1885.97
Random-kaimingfeat230.22
Relative-Locfeat5
Rotation-Predselfsup/rotation_pred/r50.pydefaultfeat467.38
DeepClusterselfsup/deepcluster/r50.pydefaultfeat574.26
NPIDselfsup/npid/r50.pydefaultfeat574.50
ODCselfsup/odc/r50_v1.pydefaultfeat578.42
MoCoselfsup/moco/r50_v1.pydefaultfeat579.18
MoCo v2selfsup/moco/r50_v2.pydefaultfeat584.05
selfsup/moco/r50_v2_simclr_neck.py-> SimCLR neck
feat584.00
SimCLRselfsup/simclr/r50_bs256_ep200.pydefaultfeat578.95
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py-> MoCo v2 neckfeat577.65
BYOLselfsup/byol/r50.pydefault

ImageNet Linear Classification

MethodConfigRemarksImageNet (Multi)ImageNet (Last)
feat1feat2feat3feat4feat5avgpool
ImageNet-torchvision15.1833.9647.8667.5676.1774.12
Random-kaiming4.35
Relative-Locselfsup/relative_loc/r50.pydefault
Rotation-Predselfsup/rotation_pred/r50.pydefault12.8934.3044.9154.9949.09
DeepClusterselfsup/deepcluster/r50.pydefault46.92
NPIDselfsup/npid/r50.pydefault14.2831.2040.6854.4656.61
ODCselfsup/odc/r50_v1.pydefault14.7531.5542.4955.7257.57
MoCoselfsup/moco/r50_v1.pydefault15.3233.0844.6857.2760.6061.02
MoCo v2selfsup/moco/r50_v2.pydefault15.3534.5745.8160.9666.7267.02
selfsup/moco/r50_v2.py-> SimCLR neck
SimCLRselfsup/simclr/r50_bs256.pydefault
BYOLselfsup/byol/r50.pydefault

Place Linear Classification

ImageNet Semi-Supervised Classification

Note

  • In this benchmark, the necks or heads are removed and only the backbone CNN is evaluated by appending a linear classification head. All parameters are fine-tuned.
  • When training with 1% ImageNet, we find hyper-parameters especially the learning rate greatly influence the performance. Hence, we prepare a list of settings with the base learning rate from {0.01, 0.1} and the learning rate multiplier for the head from {1, 10, 100}. We choose the best performing setting for each method.
  • Please use --deterministic in this benchmark.
MethodConfigRemarksOptimal setting for ImageNet 1%ImageNet 1%
top-1top-5
ImageNet-torchvisionr50_lr0_01_head1.py63.1085.73
Random-kaimingr50_lr0_01_head1.py1.564.99
Relative-Locselfsup/relative_loc/r50.pydefault
Rotation-Predselfsup/rotation_pred/r50.pydefaultr50_lr0_01_head100.py18.9844.05
DeepClusterselfsup/deepcluster/r50.pydefaultr50_lr0_01_head1_sobel.py33.4458.62
NPIDselfsup/npid/r50.pydefaultr50_lr0_01_head100.py27.9554.37
ODCselfsup/odc/r50_v1.pydefaultr50_lr0_1_head100.py32.3961.02
MoCoselfsup/moco/r50_v1.pydefaultr50_lr0_01_head100.py33.1561.30
MoCo v2selfsup/moco/r50_v2.pydefaultr50_lr0_01_head100.py38.7167.90
selfsup/moco/r50_v2.py-> SimCLR neck
SimCLRselfsup/simclr/r50_bs256_ep200.pydefaultr50_lr0_01_head100.py36.0964.50
selfsup/simclr/r50_bs256_ep200_mocov2_neck.py-> MoCo v2 neck
BYOLselfsup/byol/r50.pydefault

PASCAL VOC07+12 Object Detection