mmselfsup/openselfsup/models/moco.py

190 lines
6.1 KiB
Python

import torch
import torch.nn as nn
from openselfsup.utils import print_log
from . import builder
from .registry import MODELS
@MODELS.register_module
class MOCO(nn.Module):
'''MOCO.
Part of the code is borrowed from:
"https://github.com/facebookresearch/moco/blob/master/moco/builder.py".
'''
def __init__(self,
backbone,
neck=None,
head=None,
pretrained=None,
queue_len=65536,
feat_dim=128,
momentum=0.999,
**kwargs):
super(MOCO, self).__init__()
self.encoder_q = nn.Sequential(
builder.build_backbone(backbone), builder.build_neck(neck))
self.encoder_k = nn.Sequential(
builder.build_backbone(backbone), builder.build_neck(neck))
self.backbone = self.encoder_q[0]
for param in self.encoder_k.parameters():
param.requires_grad = False
self.head = builder.build_head(head)
self.init_weights(pretrained=pretrained)
self.queue_len = queue_len
self.momentum = momentum
# create the queue
self.register_buffer("queue", torch.randn(feat_dim, queue_len))
self.queue = nn.functional.normalize(self.queue, dim=0)
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
def init_weights(self, pretrained=None):
if pretrained is not None:
print_log('load model from: {}'.format(pretrained), logger='root')
self.encoder_q[0].init_weights(pretrained=pretrained)
self.encoder_q[1].init_weights(init_linear='kaiming')
for param_q, param_k in zip(self.encoder_q.parameters(),
self.encoder_k.parameters()):
param_k.data.copy_(param_q.data)
@torch.no_grad()
def _momentum_update_key_encoder(self):
"""
Momentum update of the key encoder
"""
for param_q, param_k in zip(self.encoder_q.parameters(),
self.encoder_k.parameters()):
param_k.data = param_k.data * self.momentum + \
param_q.data * (1. - self.momentum)
@torch.no_grad()
def _dequeue_and_enqueue(self, keys):
# gather keys before updating queue
keys = concat_all_gather(keys)
batch_size = keys.shape[0]
ptr = int(self.queue_ptr)
assert self.queue_len % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.queue[:, ptr:ptr + batch_size] = keys.transpose(0, 1)
ptr = (ptr + batch_size) % self.queue_len # move pointer
self.queue_ptr[0] = ptr
@torch.no_grad()
def _batch_shuffle_ddp(self, x):
"""
Batch shuffle, for making use of BatchNorm.
*** Only support DistributedDataParallel (DDP) model. ***
"""
# gather from all gpus
batch_size_this = x.shape[0]
x_gather = concat_all_gather(x)
batch_size_all = x_gather.shape[0]
num_gpus = batch_size_all // batch_size_this
# random shuffle index
idx_shuffle = torch.randperm(batch_size_all).cuda()
# broadcast to all gpus
torch.distributed.broadcast(idx_shuffle, src=0)
# index for restoring
idx_unshuffle = torch.argsort(idx_shuffle)
# shuffled index for this gpu
gpu_idx = torch.distributed.get_rank()
idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx]
return x_gather[idx_this], idx_unshuffle
@torch.no_grad()
def _batch_unshuffle_ddp(self, x, idx_unshuffle):
"""
Undo batch shuffle.
*** Only support DistributedDataParallel (DDP) model. ***
"""
# gather from all gpus
batch_size_this = x.shape[0]
x_gather = concat_all_gather(x)
batch_size_all = x_gather.shape[0]
num_gpus = batch_size_all // batch_size_this
# restored index for this gpu
gpu_idx = torch.distributed.get_rank()
idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx]
return x_gather[idx_this]
def forward_train(self, img, **kwargs):
assert img.dim() == 5, \
"Input must have 5 dims, got: {}".format(img.dim())
im_q = img[:, 0, ...].contiguous()
im_k = img[:, 1, ...].contiguous()
# compute query features
q = self.encoder_q(im_q)[0] # queries: NxC
q = nn.functional.normalize(q, dim=1)
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update_key_encoder() # update the key encoder
# shuffle for making use of BN
im_k, idx_unshuffle = self._batch_shuffle_ddp(im_k)
k = self.encoder_k(im_k)[0] # keys: NxC
k = nn.functional.normalize(k, dim=1)
# undo shuffle
k = self._batch_unshuffle_ddp(k, idx_unshuffle)
# compute logits
# Einstein sum is more intuitive
# positive logits: Nx1
l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)
# negative logits: NxK
l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()])
losses = self.head(l_pos, l_neg)
self._dequeue_and_enqueue(k)
return losses
def forward_test(self, img, **kwargs):
pass
def forward(self, img, mode='train', **kwargs):
if mode == 'train':
return self.forward_train(img, **kwargs)
elif mode == 'test':
return self.forward_test(img, **kwargs)
elif mode == 'extract':
return self.backbone(img)
else:
raise Exception("No such mode: {}".format(mode))
# utils
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [
torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output