179 lines
6.5 KiB
Python
179 lines
6.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from __future__ import division
|
|
import argparse
|
|
import os
|
|
import os.path as osp
|
|
import time
|
|
import warnings
|
|
|
|
import mmcv
|
|
import torch
|
|
from mmcv import Config, DictAction
|
|
from mmcv.runner import get_dist_info, init_dist
|
|
|
|
from mmselfsup import __version__
|
|
from mmselfsup.apis import init_random_seed, set_random_seed, train_model
|
|
from mmselfsup.datasets import build_dataset
|
|
from mmselfsup.models import build_algorithm
|
|
from mmselfsup.utils import collect_env, get_root_logger, setup_multi_processes
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Train a model')
|
|
parser.add_argument('config', help='train config file path')
|
|
parser.add_argument('--work_dir', help='the dir to save logs and models')
|
|
parser.add_argument(
|
|
'--resume_from', help='the checkpoint file to resume from')
|
|
group_gpus = parser.add_mutually_exclusive_group()
|
|
group_gpus.add_argument(
|
|
'--gpus',
|
|
type=int,
|
|
default=1,
|
|
help='(Deprecated, please use --gpu-id) number of gpus to use '
|
|
'(only applicable to non-distributed training)')
|
|
group_gpus.add_argument(
|
|
'--gpu_ids',
|
|
type=int,
|
|
nargs='+',
|
|
help='(Deprecated, please use --gpu-id) ids of gpus to use '
|
|
'(only applicable to non-distributed training)')
|
|
group_gpus.add_argument(
|
|
'--gpu-id',
|
|
type=int,
|
|
default=0,
|
|
help='id of gpu to use '
|
|
'(only applicable to non-distributed training)')
|
|
parser.add_argument('--seed', type=int, default=None, help='random seed')
|
|
parser.add_argument(
|
|
'--deterministic',
|
|
action='store_true',
|
|
help='whether to set deterministic options for CUDNN backend.')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='job launcher')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
# set multi-process settings
|
|
setup_multi_processes(cfg)
|
|
|
|
# set cudnn_benchmark
|
|
if cfg.get('cudnn_benchmark', False):
|
|
torch.backends.cudnn.benchmark = True
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
cfg.work_dir = args.work_dir
|
|
elif cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
work_type = args.config.split('/')[1]
|
|
cfg.work_dir = osp.join('./work_dirs', work_type,
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
if args.resume_from is not None:
|
|
cfg.resume_from = args.resume_from
|
|
if args.gpus is not None:
|
|
cfg.gpu_ids = range(1)
|
|
warnings.warn('`--gpus` is deprecated because we only support '
|
|
'single GPU mode in non-distributed training. '
|
|
'Use `gpus=1` now.')
|
|
if args.gpu_ids is not None:
|
|
cfg.gpu_ids = args.gpu_ids[0:1]
|
|
warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. '
|
|
'Because we only support single GPU mode in '
|
|
'non-distributed training. Use the first GPU '
|
|
'in `gpu_ids` now.')
|
|
if args.gpus is None and args.gpu_ids is None:
|
|
cfg.gpu_ids = [args.gpu_id]
|
|
|
|
# init distributed env first, since logger depends on the dist info.
|
|
if args.launcher == 'none':
|
|
distributed = False
|
|
assert cfg.model.type not in [
|
|
'DeepCluster', 'MoCo', 'SimCLR', 'ODC', 'NPID', 'DenseCL'
|
|
], f'{cfg.model.type} does not support non-dist training.'
|
|
else:
|
|
distributed = True
|
|
init_dist(args.launcher, **cfg.dist_params)
|
|
# re-set gpu_ids with distributed training mode
|
|
_, world_size = get_dist_info()
|
|
cfg.gpu_ids = range(world_size)
|
|
|
|
# create work_dir
|
|
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
|
|
|
|
# init the logger before other steps
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
log_file = osp.join(cfg.work_dir, f'train_{timestamp}.log')
|
|
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
|
|
|
|
# init the meta dict to record some important information such as
|
|
# environment info and seed, which will be logged
|
|
meta = dict()
|
|
# log env info
|
|
env_info_dict = collect_env()
|
|
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
|
|
dash_line = '-' * 60 + '\n'
|
|
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
|
|
dash_line)
|
|
meta['env_info'] = env_info
|
|
meta['config'] = cfg.pretty_text
|
|
# log some basic info
|
|
logger.info(f'Distributed training: {distributed}')
|
|
logger.info(f'Config:\n{cfg.pretty_text}')
|
|
|
|
# set random seeds
|
|
seed = init_random_seed(args.seed)
|
|
logger.info(f'Set random seed to {seed}, '
|
|
f'deterministic: {args.deterministic}')
|
|
set_random_seed(seed, deterministic=args.deterministic)
|
|
cfg.seed = seed
|
|
meta['seed'] = seed
|
|
meta['exp_name'] = osp.basename(args.config)
|
|
|
|
model = build_algorithm(cfg.model)
|
|
model.init_weights()
|
|
|
|
datasets = [build_dataset(cfg.data.train)]
|
|
assert len(cfg.workflow) == 1, 'Validation is called by hook.'
|
|
if cfg.checkpoint_config is not None:
|
|
# save mmselfsup version, config file content and class names in
|
|
# checkpoints as meta data
|
|
cfg.checkpoint_config.meta = dict(
|
|
mmselfsup_version=__version__, config=cfg.pretty_text)
|
|
|
|
train_model(
|
|
model,
|
|
datasets,
|
|
cfg,
|
|
distributed=distributed,
|
|
timestamp=timestamp,
|
|
meta=meta)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|