lkylkylky e761acd1bd [Feature] Add Maskfeat-1.x Support (#494)
* [Feature]: Add MaskfeatMaskGenerator Pipeline

* [Feature]: Add MaskFeatMaskGenerator Pipeline

* [Feature]: Add Backbone of MaskFeat

* [Feature]: Add HogLayerC for MaskFeat

* [Feature]: Add Loss of MaskFeat

* [Feature]: Add Head of MaskFeat

* [Feature]: Add Algorithms of MaskFeat

* [Feature]: Add Config of MaskFeat

* [Fix] fix ut of MaskFeatMaskGenerator

* refine configs

* update

* refactor to support hog generator

* update config

* update

* update config and metafiel

* update maskfeat model link

* fix ut

* refine codes

* fix lint

* refine docstring

* refactor maskfeat head

* update model links

* fix ut

* refine docstring

* update model-index

* using BEiTMaskGenerator

* refine configs

* update ut

* fix lint

Co-authored-by: fangyixiao18 <fangyx18@hotmail.com>
2022-11-03 16:09:36 +08:00

55 lines
1.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmengine.structures import InstanceData
from mmselfsup.models.algorithms.maskfeat import MaskFeat
from mmselfsup.structures import SelfSupDataSample
from mmselfsup.utils import register_all_modules
register_all_modules()
backbone = dict(type='MaskFeatViT', arch='b', patch_size=16)
neck = dict(
type='LinearNeck', in_channels=768, out_channels=108, with_avg_pool=False)
head = dict(
type='MaskFeatPretrainHead',
loss=dict(type='PixelReconstructionLoss', criterion='L2'))
target_generator = dict(
type='HOGGenerator', nbins=9, pool=8, gaussian_window=16)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_maskfeat():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'bgr_to_rgb': True
}
alg = MaskFeat(
backbone=backbone,
neck=neck,
head=head,
target_generator=target_generator,
data_preprocessor=copy.deepcopy(data_preprocessor))
# test forward_train
fake_data_sample = SelfSupDataSample()
fake_mask = InstanceData(value=torch.rand((14, 14)).bool())
fake_data_sample.mask = fake_mask
fake_data = {
'inputs': [torch.randn((2, 3, 224, 224))],
'data_sample': [fake_data_sample for _ in range(2)]
}
fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)
fake_feats = alg.extract_feat(fake_batch_inputs, fake_data_samples)
assert list(fake_feats.shape) == [2, 197, 768]