mirror of
https://github.com/open-mmlab/mmselfsup.git
synced 2025-06-03 14:59:38 +08:00
* [Feature]: Add MaskfeatMaskGenerator Pipeline * [Feature]: Add MaskFeatMaskGenerator Pipeline * [Feature]: Add Backbone of MaskFeat * [Feature]: Add HogLayerC for MaskFeat * [Feature]: Add Loss of MaskFeat * [Feature]: Add Head of MaskFeat * [Feature]: Add Algorithms of MaskFeat * [Feature]: Add Config of MaskFeat * [Fix] fix ut of MaskFeatMaskGenerator * refine configs * update * refactor to support hog generator * update config * update * update config and metafiel * update maskfeat model link * fix ut * refine codes * fix lint * refine docstring * refactor maskfeat head * update model links * fix ut * refine docstring * update model-index * using BEiTMaskGenerator * refine configs * update ut * fix lint Co-authored-by: fangyixiao18 <fangyx18@hotmail.com>
55 lines
1.7 KiB
Python
55 lines
1.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
from mmengine.structures import InstanceData
|
|
|
|
from mmselfsup.models.algorithms.maskfeat import MaskFeat
|
|
from mmselfsup.structures import SelfSupDataSample
|
|
from mmselfsup.utils import register_all_modules
|
|
|
|
register_all_modules()
|
|
|
|
backbone = dict(type='MaskFeatViT', arch='b', patch_size=16)
|
|
neck = dict(
|
|
type='LinearNeck', in_channels=768, out_channels=108, with_avg_pool=False)
|
|
head = dict(
|
|
type='MaskFeatPretrainHead',
|
|
loss=dict(type='PixelReconstructionLoss', criterion='L2'))
|
|
target_generator = dict(
|
|
type='HOGGenerator', nbins=9, pool=8, gaussian_window=16)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_maskfeat():
|
|
data_preprocessor = {
|
|
'mean': [0.5, 0.5, 0.5],
|
|
'std': [0.5, 0.5, 0.5],
|
|
'bgr_to_rgb': True
|
|
}
|
|
|
|
alg = MaskFeat(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
target_generator=target_generator,
|
|
data_preprocessor=copy.deepcopy(data_preprocessor))
|
|
|
|
# test forward_train
|
|
fake_data_sample = SelfSupDataSample()
|
|
fake_mask = InstanceData(value=torch.rand((14, 14)).bool())
|
|
fake_data_sample.mask = fake_mask
|
|
fake_data = {
|
|
'inputs': [torch.randn((2, 3, 224, 224))],
|
|
'data_sample': [fake_data_sample for _ in range(2)]
|
|
}
|
|
|
|
fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
|
|
fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss')
|
|
assert isinstance(fake_outputs['loss'].item(), float)
|
|
|
|
fake_feats = alg.extract_feat(fake_batch_inputs, fake_data_samples)
|
|
assert list(fake_feats.shape) == [2, 197, 768]
|