Yuan Liu d73c953804
[Feature]: MILAN supported (#600)
* [Feature]: Add milan ft config

* [Feature]: Add milan linear prob

* [Feature]: Set diff rank seed in mae ft

* [Feature]: V1

* [Feature]: Add target generator

* [Feature]: Add MILAN head and loss

* [Feature]: Refine milan

* [Feature]: Delete redundant mask and ids_shuffle

* [Feature]: Delete redundant return value of attention masking

* [Feature]: Detele return attention param

* [Feature]: Add typehint and docstring for PromptDecoder and PromptAttention

* [Feature]: Add type hint and docstring

* [Feature]: Fix lint

* [Fix]: Remove petrel backend

* [Feature]: Delete redundant code in clip

* [Feature]: Add ut for milan algorithm

* [Feature]: Delete redundant code

* [Feature]: Use mock for target generator

* [Feature]: Add docstring

* [Feature]: Create classification folder in milan

* [Feature]: Add README

* [Feature]: Add metafile

* [Feature]: Add main paper readme

* [Feature]: Update model zoom

* [Feature]: Fix review

* [Feature]: Fix config path bug

* [Feature]: Fix review#2

* [Feature]: Delete MILAN loss

* [Fix]: Add metafile

* [Fix]: Fix lint

* [Feature]: Change the test milan

* [Feature]: Update the config file name
2022-12-06 19:42:13 +08:00

55 lines
1.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
from unittest.mock import MagicMock
import pytest
import torch
from mmselfsup.models.algorithms import MILAN
from mmselfsup.structures import SelfSupDataSample
from mmselfsup.utils import register_all_modules
register_all_modules()
backbone = dict(type='MILANViT', arch='b', patch_size=16, mask_ratio=0.75)
neck = dict(
type='MILANPretrainDecoder',
patch_size=16,
in_chans=3,
embed_dim=768,
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=16,
mlp_ratio=4.,
)
loss = dict(type='CosineSimilarityLoss', shift_factor=2.0, scale_factor=2.0)
head = dict(type='MILANPretrainHead', loss=loss)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_milan():
data_preprocessor = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'bgr_to_rgb': True
}
alg = MILAN(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=copy.deepcopy(data_preprocessor))
target_generator = MagicMock(
return_value=(torch.ones(2, 197, 512), torch.ones(2, 197, 197)))
alg.target_generator = target_generator
fake_data = {
'inputs': [torch.randn((2, 3, 224, 224))],
'data_sample': [SelfSupDataSample() for _ in range(2)]
}
fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)