mmselfsup/projects/shape_bias/toy_example.py

151 lines
4.8 KiB
Python

dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
num_classes=1000,
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
]
train_dataloader = dict(
batch_size=2048,
num_workers=4,
dataset=dict(
type='ImageNet',
data_root='data/imagenet/',
ann_file='meta/train.txt',
data_prefix='train',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', scale=224, backend='pillow'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='PackClsInputs')
]),
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
persistent_workers=True,
pin_memory=True,
drop_last=True)
val_dataloader = dict(
batch_size=32,
num_workers=4,
dataset=dict(
type='ImageNet',
data_root='data/imagenet/',
ann_file='meta/val.txt',
data_prefix='val',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
]),
sampler=dict(type='DefaultSampler', shuffle=False),
persistent_workers=True,
drop_last=False)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
test_dataloader = dict(
pin_memory=True,
collate_fn=dict(type='default_collate'),
batch_size=32,
num_workers=4,
dataset=dict(
type='CustomDataset',
data_root='data/cue-conflict',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='ResizeEdge', scale=256, edge='short', backend='pillow'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackClsInputs')
]),
sampler=dict(type='DefaultSampler', shuffle=False),
persistent_workers=True,
drop_last=False)
test_evaluator = dict(
type='mmselfsup.ShapeBiasMetric',
csv_dir='work_dirs/shape_bias',
model_name='mae')
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(type='mmselfsup.LARS', lr=6.4, weight_decay=0.0))
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.0001,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=80,
by_epoch=True,
begin=10,
end=90,
eta_min=0.0,
convert_to_iter_based=True)
]
train_cfg = dict(by_epoch=True, max_epochs=90, val_interval=1)
val_cfg = dict()
test_cfg = dict()
auto_scale_lr = dict(base_batch_size=1024)
default_scope = 'mmcls'
default_hooks = dict(
timer=dict(type='IterTimerHook', _scope_='mmcls'),
logger=dict(type='LoggerHook', interval=10, _scope_='mmcls'),
param_scheduler=dict(type='ParamSchedulerHook', _scope_='mmcls'),
checkpoint=dict(
type='CheckpointHook', interval=1, _scope_='mmcls', max_keep_ckpts=3),
sampler_seed=dict(type='DistSamplerSeedHook', _scope_='mmcls'),
visualization=dict(
type='VisualizationHook', enable=False, _scope_='mmcls'))
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'))
vis_backends = [dict(type='LocalVisBackend', _scope_='mmcls')]
visualizer = dict(
type='ClsVisualizer',
vis_backends=[dict(type='LocalVisBackend')],
_scope_='mmcls')
log_level = 'INFO'
load_from = ''
resume = False
randomness = dict(seed=0, deterministic=False, diff_rank_seed=True)
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='base',
img_size=224,
patch_size=16,
frozen_stages=12,
avg_token=False,
final_norm=True,
init_cfg=dict(type='Pretrained', checkpoint='')),
neck=dict(type='mmselfsup.ClsBatchNormNeck', input_features=768),
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss'),
init_cfg=[dict(type='TruncNormal', layer='Linear', std=0.01)]),
data_preprocessor=dict(
num_classes=1000,
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True))
optimizer = dict(type='mmselfsup.LARS', lr=6.4, weight_decay=0.0, momentum=0.9)
launcher = 'pytorch'
work_dir = './work_dirs/shape_bias'