40 lines
1.1 KiB
Python
40 lines
1.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from mmselfsup.models.algorithms import SimCLR
|
|
|
|
backbone = dict(
|
|
type='ResNet',
|
|
depth=18,
|
|
in_channels=3,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='BN'))
|
|
neck = dict(
|
|
type='NonLinearNeck', # SimCLR non-linear neck
|
|
in_channels=512,
|
|
hid_channels=2,
|
|
out_channels=2,
|
|
num_layers=2,
|
|
with_avg_pool=True)
|
|
head = dict(type='ContrastiveHead', temperature=0.1)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_simclr():
|
|
with pytest.raises(AssertionError):
|
|
alg = SimCLR(backbone=backbone, neck=None, head=head)
|
|
with pytest.raises(AssertionError):
|
|
alg = SimCLR(backbone=backbone, neck=neck, head=None)
|
|
|
|
alg = SimCLR(backbone=backbone, neck=neck, head=head)
|
|
with pytest.raises(AssertionError):
|
|
fake_input = torch.randn((16, 3, 224, 224))
|
|
alg.forward_train(fake_input)
|
|
|
|
fake_input = torch.randn((2, 3, 224, 224))
|
|
fake_backbone_out = alg.extract_feat(fake_input)
|
|
assert fake_backbone_out[0].size() == torch.Size([2, 512, 7, 7])
|