mmselfsup/tests/test_models/test_backbones/test_resnext.py

44 lines
1.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmselfsup.models.backbones import ResNeXt
from mmselfsup.models.backbones.resnext import Bottleneck as BottleneckX
def test_resnext():
with pytest.raises(KeyError):
# ResNeXt depth should be in [50, 101, 152]
ResNeXt(depth=18)
# Test ResNeXt with group 32, width_per_group 4
model = ResNeXt(
depth=50, groups=32, width_per_group=4, out_indices=(0, 1, 2, 3, 4))
for m in model.modules():
if isinstance(m, BottleneckX):
assert m.conv2.groups == 32
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == torch.Size([1, 64, 112, 112])
assert feat[1].shape == torch.Size([1, 256, 56, 56])
assert feat[2].shape == torch.Size([1, 512, 28, 28])
assert feat[3].shape == torch.Size([1, 1024, 14, 14])
assert feat[4].shape == torch.Size([1, 2048, 7, 7])
# Test ResNeXt with group 32, width_per_group 4 and layers 3 out forward
model = ResNeXt(depth=50, groups=32, width_per_group=4, out_indices=(4, ))
for m in model.modules():
if isinstance(m, BottleneckX):
assert m.conv2.groups == 32
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 2048, 7, 7])