Yixiao Fang df907e5ce0
Bump version to v0.8.0 (#269)
* [Fix]: Fix mmcls upgrade bug (#235)

* [Feature]: Add multi machine dist_train (#232)

* [Feature]: Add multi machine dist_train

* [Fix]: Change bash to sh

* [Fix]: Fix missing sh suffix

* [Refactor]: Change bash to sh

* [Refactor] Add unit test (#234)

* [Refactor] add unit test

* update workflow

* update

* [Fix] fix lint

* update test

* refactor moco and densecl unit test

* fix lint

* add unit test

* update unit test

* remove modification

* [Feature]: Add MAE metafile (#238)

* [Feature]: Add MAE metafile

* [Fix]: Fix lint

* [Fix]: Change LARS to AdamW in the metafile of MAE

* [Fix] fix codecov bug (#241)

* [Fix] fix codecov bug

* update comment

* [Refactor] Using MMCls backbones (#233)

* [Refactor] using backbones from MMCls

* [Refactor] modify the unit test

* [Fix] modify default setting of out_indices

* [Docs] fix lint

* [Refactor] modify super init

* [Refactore] remove res_layer.py

* using mmcv PatchEmbed

* [Fix]: Fix outdated problem (#249)

* [Fix]: Fix outdated problem

* [Fix]: Update MoCov3 bibtex

* [Fix]: Use abs path in README

* [Fix]: Reformat MAE bibtex

* [Fix]: Reformat MoCov3 bibtex

* [Feature] Resume from the latest checkpoint automatically. (#245)

* [Feature] Resume from the latest checkpoint automatically.

* fix windows path problem

* fix lint

* add code reference

* [Docs] add docstring for ResNet and ResNeXt (#252)

* [Feature] support KNN benchmark (#243)

* [Feature] support KNN benchmark

* [Fix] add docstring and multi-machine testing

* [Fix] fix lint

* [Fix] change args format and check init_cfg

* [Docs] add benchmark tutorial

* [Docs] add benchmark results

* [Feature]: SimMIM supported (#239)

* [Feature]: SimMIM Pretrain

* [Feature]: Add mix precision and 16x128 config

* [Fix]: Fix config import bug

* [Fix]: Fix config bug

* [Feature]: Simim Finetune

* [Fix]: Log every 100

* [Fix]: Fix eval problem

* [Feature]: Add docstring for simmim

* [Refactor]: Merge layer wise lr decay to Default constructor

* [Fix]:Fix simmim evaluation bug

* [Fix]: Change model to be compatible to latest version of mmcls

* [Fix]: Fix lint

* [Fix]: Rewrite forward_train for classification cls

* [Feature]: Add UT

* [Fix]: Fix lint

* [Feature]: Add 32 gpus training for simmim ft

* [Fix]: Rename mmcls classifier wrapper

* [Fix]: Add docstring to SimMIMNeck

* [Feature]: Generate docstring for the forward function of simmim encoder

* [Fix]: Rewrite the class docstring for constructor

* [Fix]: Fix lint

* [Fix]: Fix UT

* [Fix]: Reformat config

* [Fix]: Add img resolution

* [Feature]: Add readme and metafile

* [Fix]: Fix typo in README.md

* [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator

* [Fix]: Change the name of SwinForSimMIM

* [Fix]: Delete irrelevant files

* [Feature]: Create extra transformerfinetuneconstructor

* [Fix]: Fix lint

* [Fix]: Update SimMIM README

* [Fix]: Change SimMIMPretrainHead to SimMIMHead

* [Fix]: Fix the docstring of ft constructor

* [Fix]: Fix UT

* [Fix]: Recover deletion

Co-authored-by: Your <you@example.com>

* [Fix] add seed to distributed sampler (#250)

* [Fix] add seed to distributed sampler

* fix lint

* [Feature] Add ImageNet21k (#225)

* solve memory leak by limited implementation

* fix lint problem

Co-authored-by: liming <liming.ai@bytedance.com>

* [Refactor] change args format to '--a-b' (#253)

* [Refactor] change args format to `--a-b`

* modify tsne script

* modify 'sh' files

* modify getting_started.md

* modify getting_started.md

* [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261)

* [Fix] fix positional parameter error (#260)

* [Fix] fix command errors in benchmarks tutorial (#263)

* [Docs] add brief installation steps in README.md (#265)

* [Docs] add colab tutorial (#247)

* [Docs] add colab tutorial

* fix lint

* modify the colab tutorial, using API to train the model

* modify the description

* remove #

* modify the command

* [Docs] translate 6_benchmarks.md into Chinese (#262)

* [Docs] translate 6_benchmarks.md into Chinese

* Update 6_benchmarks.md

change 基准 to 基准评测

* Update 6_benchmarks.md

(1)  Add Chinese translation of  ‘1 folder for ImageNet nearest-neighbor classification task’
(2) 数据预准备 -> 数据准备

* [Docs] remove install scripts in README (#267)

* [Docs] Update version information in dev branch (#268)

* update version to v0.8.0

* fix lint

* [Fix]: Install the latest mmcls

* [Fix]: Add SimMIM in RAEDME

Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com>
Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com>
Co-authored-by: Your <you@example.com>
Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com>
Co-authored-by: liming <liming.ai@bytedance.com>
Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com>
Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00

44 lines
1.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmselfsup.models.backbones import ResNeXt
from mmselfsup.models.backbones.resnext import Bottleneck as BottleneckX
def test_resnext():
with pytest.raises(KeyError):
# ResNeXt depth should be in [50, 101, 152]
ResNeXt(depth=18)
# Test ResNeXt with group 32, width_per_group 4
model = ResNeXt(
depth=50, groups=32, width_per_group=4, out_indices=(0, 1, 2, 3, 4))
for m in model.modules():
if isinstance(m, BottleneckX):
assert m.conv2.groups == 32
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == torch.Size([1, 64, 112, 112])
assert feat[1].shape == torch.Size([1, 256, 56, 56])
assert feat[2].shape == torch.Size([1, 512, 28, 28])
assert feat[3].shape == torch.Size([1, 1024, 14, 14])
assert feat[4].shape == torch.Size([1, 2048, 7, 7])
# Test ResNeXt with group 32, width_per_group 4 and layers 3 out forward
model = ResNeXt(depth=50, groups=32, width_per_group=4, out_indices=(4, ))
for m in model.modules():
if isinstance(m, BottleneckX):
assert m.conv2.groups == 32
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 1
assert feat[0].shape == torch.Size([1, 2048, 7, 7])