Yixiao Fang df907e5ce0
Bump version to v0.8.0 (#269)
* [Fix]: Fix mmcls upgrade bug (#235)

* [Feature]: Add multi machine dist_train (#232)

* [Feature]: Add multi machine dist_train

* [Fix]: Change bash to sh

* [Fix]: Fix missing sh suffix

* [Refactor]: Change bash to sh

* [Refactor] Add unit test (#234)

* [Refactor] add unit test

* update workflow

* update

* [Fix] fix lint

* update test

* refactor moco and densecl unit test

* fix lint

* add unit test

* update unit test

* remove modification

* [Feature]: Add MAE metafile (#238)

* [Feature]: Add MAE metafile

* [Fix]: Fix lint

* [Fix]: Change LARS to AdamW in the metafile of MAE

* [Fix] fix codecov bug (#241)

* [Fix] fix codecov bug

* update comment

* [Refactor] Using MMCls backbones (#233)

* [Refactor] using backbones from MMCls

* [Refactor] modify the unit test

* [Fix] modify default setting of out_indices

* [Docs] fix lint

* [Refactor] modify super init

* [Refactore] remove res_layer.py

* using mmcv PatchEmbed

* [Fix]: Fix outdated problem (#249)

* [Fix]: Fix outdated problem

* [Fix]: Update MoCov3 bibtex

* [Fix]: Use abs path in README

* [Fix]: Reformat MAE bibtex

* [Fix]: Reformat MoCov3 bibtex

* [Feature] Resume from the latest checkpoint automatically. (#245)

* [Feature] Resume from the latest checkpoint automatically.

* fix windows path problem

* fix lint

* add code reference

* [Docs] add docstring for ResNet and ResNeXt (#252)

* [Feature] support KNN benchmark (#243)

* [Feature] support KNN benchmark

* [Fix] add docstring and multi-machine testing

* [Fix] fix lint

* [Fix] change args format and check init_cfg

* [Docs] add benchmark tutorial

* [Docs] add benchmark results

* [Feature]: SimMIM supported (#239)

* [Feature]: SimMIM Pretrain

* [Feature]: Add mix precision and 16x128 config

* [Fix]: Fix config import bug

* [Fix]: Fix config bug

* [Feature]: Simim Finetune

* [Fix]: Log every 100

* [Fix]: Fix eval problem

* [Feature]: Add docstring for simmim

* [Refactor]: Merge layer wise lr decay to Default constructor

* [Fix]:Fix simmim evaluation bug

* [Fix]: Change model to be compatible to latest version of mmcls

* [Fix]: Fix lint

* [Fix]: Rewrite forward_train for classification cls

* [Feature]: Add UT

* [Fix]: Fix lint

* [Feature]: Add 32 gpus training for simmim ft

* [Fix]: Rename mmcls classifier wrapper

* [Fix]: Add docstring to SimMIMNeck

* [Feature]: Generate docstring for the forward function of simmim encoder

* [Fix]: Rewrite the class docstring for constructor

* [Fix]: Fix lint

* [Fix]: Fix UT

* [Fix]: Reformat config

* [Fix]: Add img resolution

* [Feature]: Add readme and metafile

* [Fix]: Fix typo in README.md

* [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator

* [Fix]: Change the name of SwinForSimMIM

* [Fix]: Delete irrelevant files

* [Feature]: Create extra transformerfinetuneconstructor

* [Fix]: Fix lint

* [Fix]: Update SimMIM README

* [Fix]: Change SimMIMPretrainHead to SimMIMHead

* [Fix]: Fix the docstring of ft constructor

* [Fix]: Fix UT

* [Fix]: Recover deletion

Co-authored-by: Your <you@example.com>

* [Fix] add seed to distributed sampler (#250)

* [Fix] add seed to distributed sampler

* fix lint

* [Feature] Add ImageNet21k (#225)

* solve memory leak by limited implementation

* fix lint problem

Co-authored-by: liming <liming.ai@bytedance.com>

* [Refactor] change args format to '--a-b' (#253)

* [Refactor] change args format to `--a-b`

* modify tsne script

* modify 'sh' files

* modify getting_started.md

* modify getting_started.md

* [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261)

* [Fix] fix positional parameter error (#260)

* [Fix] fix command errors in benchmarks tutorial (#263)

* [Docs] add brief installation steps in README.md (#265)

* [Docs] add colab tutorial (#247)

* [Docs] add colab tutorial

* fix lint

* modify the colab tutorial, using API to train the model

* modify the description

* remove #

* modify the command

* [Docs] translate 6_benchmarks.md into Chinese (#262)

* [Docs] translate 6_benchmarks.md into Chinese

* Update 6_benchmarks.md

change 基准 to 基准评测

* Update 6_benchmarks.md

(1)  Add Chinese translation of  ‘1 folder for ImageNet nearest-neighbor classification task’
(2) 数据预准备 -> 数据准备

* [Docs] remove install scripts in README (#267)

* [Docs] Update version information in dev branch (#268)

* update version to v0.8.0

* fix lint

* [Fix]: Install the latest mmcls

* [Fix]: Add SimMIM in RAEDME

Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com>
Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com>
Co-authored-by: Your <you@example.com>
Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com>
Co-authored-by: liming <liming.ai@bytedance.com>
Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com>
Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00

140 lines
4.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmselfsup.models.backbones import ResNet
from mmselfsup.models.backbones.resnet import BasicBlock, Bottleneck
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (BasicBlock, Bottleneck)):
return True
return False
def all_zeros(modules):
"""Check if the weight(and bias) is all zero."""
weight_zero = torch.equal(modules.weight.data,
torch.zeros_like(modules.weight.data))
if hasattr(modules, 'bias'):
bias_zero = torch.equal(modules.bias.data,
torch.zeros_like(modules.bias.data))
else:
bias_zero = True
return weight_zero and bias_zero
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_resnet():
"""Test resnet backbone."""
# Test ResNet50 norm_eval=True
model = ResNet(50, norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test ResNet50 with torchvision pretrained weight
model = ResNet(depth=50, norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test ResNet50 with first stage frozen
frozen_stages = 1
model = ResNet(50, frozen_stages=frozen_stages)
model.init_weights()
model.train()
assert model.norm1.training is False
for layer in [model.conv1, model.norm1]:
for param in layer.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test ResNet18 forward
model = ResNet(18, out_indices=(0, 1, 2, 3, 4))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == (1, 64, 112, 112)
assert feat[1].shape == (1, 64, 56, 56)
assert feat[2].shape == (1, 128, 28, 28)
assert feat[3].shape == (1, 256, 14, 14)
assert feat[4].shape == (1, 512, 7, 7)
# Test ResNet50 with BatchNorm forward
model = ResNet(50, out_indices=(0, 1, 2, 3, 4))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == (1, 64, 112, 112)
assert feat[1].shape == (1, 256, 56, 56)
assert feat[2].shape == (1, 512, 28, 28)
assert feat[3].shape == (1, 1024, 14, 14)
assert feat[4].shape == (1, 2048, 7, 7)
# Test ResNet50 with layers 3 (top feature maps) out forward
model = ResNet(50, out_indices=(4, ))
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[0].shape == (1, 2048, 7, 7)
# Test ResNet50 with checkpoint forward
model = ResNet(50, out_indices=(0, 1, 2, 3, 4), with_cp=True)
for m in model.modules():
if is_block(m):
assert m.with_cp
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == (1, 64, 112, 112)
assert feat[1].shape == (1, 256, 56, 56)
assert feat[2].shape == (1, 512, 28, 28)
assert feat[3].shape == (1, 1024, 14, 14)
assert feat[4].shape == (1, 2048, 7, 7)
# zero initialization of residual blocks
model = ResNet(50, zero_init_residual=True)
model.init_weights()
for m in model.modules():
if isinstance(m, Bottleneck):
assert all_zeros(m.norm3)
elif isinstance(m, BasicBlock):
assert all_zeros(m.norm2)
# non-zero initialization of residual blocks
model = ResNet(50, zero_init_residual=False)
model.init_weights()
for m in model.modules():
if isinstance(m, Bottleneck):
assert not all_zeros(m.norm3)
elif isinstance(m, BasicBlock):
assert not all_zeros(m.norm2)