mmselfsup/tests/test_models/test_algorithms/test_cae.py

61 lines
1.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmengine.data import InstanceData
from mmselfsup.core.data_structures.selfsup_data_sample import \
SelfSupDataSample
from mmselfsup.models.algorithms import CAE
# model settings
backbone = dict(type='CAEViT', arch='b', patch_size=16, init_values=0.1)
neck = dict(
type='CAENeck',
patch_size=16,
embed_dims=768,
num_heads=12,
regressor_depth=4,
decoder_depth=4,
mlp_ratio=4,
init_values=0.1,
)
head = dict(
type='CAEHead',
tokenizer_path='cae_ckpt/encoder_stat_dict.pth',
loss=dict(type='CAELoss', lambd=2))
data_preprocessor = dict(
type='mmselfsup.CAEDataPreprocessor',
mean=[124, 117, 104],
std=[59, 58, 58],
bgr_to_rgb=True)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_cae():
model = CAE(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=data_preprocessor)
# model.init_weights()
fake_img = torch.rand((3, 224, 224))
fake_target_img = torch.rand((3, 112, 112))
fake_mask = torch.zeros((196)).bool()
fake_mask[75:150] = 1
fake_data_sample = SelfSupDataSample()
fake_mask = InstanceData(value=fake_mask)
fake_data_sample.mask = fake_mask
fake_data = [{
'inputs': [fake_img, fake_target_img],
'data_sample': fake_data_sample
}]
fake_batch_inputs, fake_data_samples = model.data_preprocessor(fake_data)
fake_outputs = model(fake_batch_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)