mmselfsup/tests/test_models/test_algorithms/test_deepcluster.py

70 lines
1.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmengine.data import InstanceData
from mmselfsup.core import SelfSupDataSample
from mmselfsup.models.algorithms import DeepCluster
num_classes = 5
with_sobel = True,
backbone = dict(
type='ResNet',
depth=18,
in_channels=2,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(type='AvgPool2dNeck')
head = dict(
type='ClsHead',
with_avg_pool=False, # already has avgpool in the neck
in_channels=512,
num_classes=num_classes)
loss = dict(type='mmcls.CrossEntropyLoss')
preprocess_cfg = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
}
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_deepcluster():
with pytest.raises(AssertionError):
alg = DeepCluster(
backbone=backbone,
with_sobel=with_sobel,
neck=neck,
head=None,
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
alg = DeepCluster(
backbone=backbone,
with_sobel=with_sobel,
neck=neck,
head=head,
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
assert alg.num_classes == num_classes
assert hasattr(alg, 'sobel_layer')
assert hasattr(alg, 'neck')
assert hasattr(alg, 'head')
fake_data_sample = SelfSupDataSample()
fake_label = InstanceData(label=torch.tensor([1]))
fake_data_sample.pseudo_label = fake_label
fake_input = [{
'inputs': [torch.randn(3, 224, 224)],
'data_sample': fake_data_sample
} for _ in range(2)]
fake_out = alg(fake_input, return_loss=False)
assert hasattr(fake_out[0].prediction, 'head0')
assert fake_out[0].prediction.head0.size() == torch.Size([num_classes])
fake_out = alg(fake_input, return_loss=True)
assert fake_out['loss'].item() > 0