52 lines
1.4 KiB
Python
52 lines
1.4 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from mmselfsup.core.data_structures.selfsup_data_sample import \
|
|
SelfSupDataSample
|
|
from mmselfsup.models.algorithms.mae import MAE
|
|
|
|
backbone = dict(type='MAEViT', arch='b', patch_size=16, mask_ratio=0.75)
|
|
neck = dict(
|
|
type='MAEPretrainDecoder',
|
|
patch_size=16,
|
|
in_chans=3,
|
|
embed_dim=768,
|
|
decoder_embed_dim=512,
|
|
decoder_depth=8,
|
|
decoder_num_heads=16,
|
|
mlp_ratio=4.,
|
|
)
|
|
loss = dict(type='MAEReconstructionLoss')
|
|
head = dict(type='MAEPretrainHead', norm_pix=False, patch_size=16, loss=loss)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_mae():
|
|
data_preprocessor = {
|
|
'mean': [0.5, 0.5, 0.5],
|
|
'std': [0.5, 0.5, 0.5],
|
|
'bgr_to_rgb': True
|
|
}
|
|
|
|
alg = MAE(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
data_preprocessor=copy.deepcopy(data_preprocessor))
|
|
|
|
fake_data = [{
|
|
'inputs': [torch.randn((3, 224, 224))],
|
|
'data_sample': SelfSupDataSample()
|
|
} for _ in range(2)]
|
|
|
|
fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
|
|
fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss')
|
|
assert isinstance(fake_outputs['loss'].item(), float)
|
|
|
|
fake_feats = alg(fake_batch_inputs, fake_data_samples, mode='tensor')
|
|
assert list(fake_feats.shape) == [2, 196, 768]
|