mmselfsup/tests/test_models/test_algorithms/test_simsiam.py

68 lines
1.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmselfsup.core import SelfSupDataSample
from mmselfsup.models.algorithms import SimSiam
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'),
zero_init_residual=True)
neck = dict(
type='NonLinearNeck',
in_channels=512,
hid_channels=2,
out_channels=2,
num_layers=3,
with_last_bn_affine=False,
with_avg_pool=True,
norm_cfg=dict(type='BN1d'))
head = dict(
type='LatentPredictHead',
loss=dict(type='CosineSimilarityLoss'),
predictor=dict(
type='NonLinearNeck',
in_channels=2,
hid_channels=2,
out_channels=2,
with_avg_pool=False,
with_last_bn=False,
with_last_bias=True,
norm_cfg=dict(type='BN1d')))
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_simsiam():
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'bgr_to_rgb': True,
}
alg = SimSiam(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=copy.deepcopy(data_preprocessor))
fake_data = [{
'inputs': [torch.randn((3, 224, 224)),
torch.randn((3, 224, 224))],
'data_sample':
SelfSupDataSample()
} for _ in range(2)]
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
assert fake_loss['loss'] > -1
# test extract
fake_feat = alg(fake_inputs, fake_data_samples, mode='tensor')
assert fake_feat[0].size() == torch.Size([2, 512, 7, 7])