72 lines
1.9 KiB
Python
72 lines
1.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from mmselfsup.core.data_structures.selfsup_data_sample import \
|
|
SelfSupDataSample
|
|
from mmselfsup.models.algorithms.swav import SwAV
|
|
|
|
nmb_crops = [2, 6]
|
|
backbone = dict(
|
|
type='ResNet',
|
|
depth=18,
|
|
in_channels=3,
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
norm_cfg=dict(type='BN'),
|
|
zero_init_residual=True)
|
|
neck = dict(
|
|
type='SwAVNeck',
|
|
in_channels=512,
|
|
hid_channels=2,
|
|
out_channels=2,
|
|
norm_cfg=dict(type='BN1d'),
|
|
with_avg_pool=True)
|
|
head = dict(
|
|
type='SwAVHead',
|
|
loss=dict(
|
|
type='SwAVLoss',
|
|
feat_dim=2, # equal to neck['out_channels']
|
|
epsilon=0.05,
|
|
temperature=0.1,
|
|
num_crops=nmb_crops))
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
def test_swav():
|
|
data_preprocessor = {
|
|
'mean': (123.675, 116.28, 103.53),
|
|
'std': (58.395, 57.12, 57.375),
|
|
'bgr_to_rgb': True
|
|
}
|
|
|
|
alg = SwAV(
|
|
backbone=backbone,
|
|
neck=neck,
|
|
head=head,
|
|
data_preprocessor=copy.deepcopy(data_preprocessor))
|
|
|
|
fake_data = [{
|
|
'inputs': [
|
|
torch.randn((3, 224, 224)),
|
|
torch.randn((3, 224, 224)),
|
|
torch.randn((3, 96, 96)),
|
|
torch.randn((3, 96, 96)),
|
|
torch.randn((3, 96, 96)),
|
|
torch.randn((3, 96, 96)),
|
|
torch.randn((3, 96, 96)),
|
|
torch.randn((3, 96, 96))
|
|
],
|
|
'data_sample':
|
|
SelfSupDataSample()
|
|
} for _ in range(2)]
|
|
|
|
fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
|
|
fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss')
|
|
assert isinstance(fake_outputs['loss'].item(), float)
|
|
|
|
fake_feat = alg(fake_batch_inputs, fake_data_samples, mode='tensor')
|
|
assert list(fake_feat[0].shape) == [2, 512, 7, 7]
|