mmselfsup/tests/test_models/test_algorithms/test_swav.py

72 lines
1.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmselfsup.core.data_structures.selfsup_data_sample import \
SelfSupDataSample
from mmselfsup.models.algorithms.swav import SwAV
nmb_crops = [2, 6]
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'),
zero_init_residual=True)
neck = dict(
type='SwAVNeck',
in_channels=512,
hid_channels=2,
out_channels=2,
norm_cfg=dict(type='BN1d'),
with_avg_pool=True)
head = dict(
type='SwAVHead',
loss=dict(
type='SwAVLoss',
feat_dim=2, # equal to neck['out_channels']
epsilon=0.05,
temperature=0.1,
num_crops=nmb_crops))
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_swav():
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'bgr_to_rgb': True
}
alg = SwAV(
backbone=backbone,
neck=neck,
head=head,
data_preprocessor=copy.deepcopy(data_preprocessor))
fake_data = [{
'inputs': [
torch.randn((3, 224, 224)),
torch.randn((3, 224, 224)),
torch.randn((3, 96, 96)),
torch.randn((3, 96, 96)),
torch.randn((3, 96, 96)),
torch.randn((3, 96, 96)),
torch.randn((3, 96, 96)),
torch.randn((3, 96, 96))
],
'data_sample':
SelfSupDataSample()
} for _ in range(2)]
fake_batch_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_outputs = alg(fake_batch_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)
fake_feat = alg(fake_batch_inputs, fake_data_samples, mode='tensor')
assert list(fake_feat[0].shape) == [2, 512, 7, 7]