mmselfsup/tests/test_runtime/test_optimizer.py

52 lines
1.4 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
import torch.nn as nn
from mmselfsup.core import LARS, build_optimizer
class ExampleModel(nn.Module):
def __init__(self):
super(ExampleModel, self).__init__()
self.test_cfg = None
self.predictor = nn.Linear(2, 1)
def forward(self, img, img_metas, test_mode=False, **kwargs):
res = self.predictor(img)
return res
def train_step(self, data_batch, optimizer):
loss = self.forward(**data_batch)
return dict(loss=loss.sum())
def test_lars():
optimizer = dict(
type='LARS',
lr=0.3,
momentum=0.9,
weight_decay=1e-6,
paramwise_options={'bias': dict(weight_decay=0., lars_exclude=True)})
model = ExampleModel()
optimizer = build_optimizer(model, optimizer)
for i in range(2):
loss = model.train_step(
dict(img=torch.ones(2, 2), img_metas=None), optimizer)
optimizer.zero_grad()
loss['loss'].backward()
optimizer.step()
with pytest.raises(ValueError):
optimizer = LARS(model.parameters(), lr=-1)
with pytest.raises(ValueError):
optimizer = LARS(model.parameters(), lr=0.1, momentum=-1)
with pytest.raises(ValueError):
optimizer = LARS(model.parameters(), lr=0.1, weight_decay=-1)
with pytest.raises(ValueError):
optimizer = LARS(model.parameters(), lr=0.1, eta=-1)