48 KiB
48 KiB
模型库
本部分内容主要介绍 MMSelfSup 支持的模型和部分下游任务的评测结果。
下游任务评测
ImageNet
ImageNet 有多个版本,不过最常用的是 ILSVRC 2012。我们提供了基于各类算法的预训练模型的分类结果,包括线性评估和微调,同时有对应的模型和日志文件。
算法 | 主干 | 预训练 Epoch | Batch 大小 | 结果 (Top-1 %) | 链接 | |||
---|---|---|---|---|---|---|---|---|
线性评估 | 微调 | 预训练 | 线性评估 | 微调 | ||||
Relative-Loc | ResNet50 | 70 | 512 | 40.4 | / | config | model | log | config | model | log | / |
Rotation-Pred | ResNet50 | 70 | 128 | 47.0 | / | config | model | log | config | model | log | / |
NPID | ResNet50 | 200 | 256 | 58.3 | / | config | model | log | config | model | log | / |
SimCLR | ResNet50 | 200 | 256 | 62.7 | / | config | model | log | config | model | log | / |
ResNet50 | 200 | 4096 | 66.9 | / | config | model | log | config | model | log | / | |
ResNet50 | 800 | 4096 | 69.2 | / | config | model | log | config | model | log | / | |
MoCo v2 | ResNet50 | 200 | 256 | 67.5 | / | config | model | log | config | model | log | / |
BYOL | ResNet50 | 200 | 4096 | 71.8 | / | config | model | log | config | model | log | / |
SwAV | ResNet50 | 200 | 256 | 70.5 | / | config | model | log | config | model | log | / |
DenseCL | ResNet50 | 200 | 256 | 63.5 | / | config | model | log | config | model | log | / |
SimSiam | ResNet50 | 100 | 256 | 68.3 | / | config | model | log | config | model | log | / |
ResNet50 | 200 | 256 | 69.8 | / | config | model | log | config | model | log | / | |
BarlowTwins | ResNet50 | 300 | 2048 | 71.8 | / | config | model | log | config | model | log | / |
MoCo v3 | ResNet50 | 100 | 4096 | 69.6 | / | config | model | log | config | model | log | / |
ResNet50 | 300 | 4096 | 72.8 | / | config | model | log | config | model | log | / | |
ResNet50 | 800 | 4096 | 74.4 | / | config | model | log | config | model | log | / | |
ViT-small | 300 | 4096 | 73.6 | / | config | model | log | config | model | log | / | |
ViT-base | 300 | 4096 | 76.9 | 83.0 | config | model | log | config | model | log | config | model | log | |
ViT-large | 300 | 4096 | / | 83.7 | config | model | log | / | config | model | log | |
MAE | ViT-base | 300 | 4096 | 60.8 | 83.1 | config | model | log | config | model | log | config | model | log |
ViT-base | 400 | 4096 | 62.5 | 83.3 | config | model | log | config | model | log | config | model | log | |
ViT-base | 800 | 4096 | 65.1 | 83.3 | config | model | log | config | model | log | config | model | log | |
ViT-base | 1600 | 4096 | 67.1 | 83.5 | config | model | log | config | model | log | config | model | log | |
ViT-large | 400 | 4096 | 70.7 | 85.2 | config | model | log | config | model | log | config | model | log | |
ViT-large | 800 | 4096 | 73.7 | 85.4 | config | model | log | config | model | log | config | model | log | |
ViT-large | 1600 | 4096 | 75.5 | 85.7 | config | model | log | config | model | log | config | model | log | |
ViT-huge-FT-224 | 1600 | 4096 | / | 86.9 | config | model | log | / | config | model | log | |
ViT-huge-FT-448 | 1600 | 4096 | / | 87.3 | config | model | log | / | config | model | log | |
CAE | ViT-base | 300 | 2048 | / | 83.3 | config | model | log | / | config | model | log |
SimMIM | Swin-base-FT192 | 100 | 2048 | / | 82.7 | config | model | log | / | config | model | log |
Swin-base-FT224 | 100 | 2048 | / | 83.5 | config | model | log | / | config | model | log | |
Swin-base-FT224 | 800 | 2048 | / | 83.7 | config | model | log | / | config | model | log | |
Swin-large-FT224 | 800 | 2048 | / | 84.8 | config | model | log | / | config | model | log | |
MaskFeat | ViT-base | 300 | 2048 | / | 83.4 | config | model | log | / | config | model | log |
BEiT | ViT-base | 300 | 2048 | / | 83.1 | config | model | log | / | config | model | log |
MILAN | ViT-base | 400 | 4096 | 78.9 | 85.3 | config | model | log | config | model | log | config | model | log |