2021-12-15 19:07:01 +08:00

48 lines
1.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmselfsup.models.algorithms import ODC
num_classes = 5
backbone = dict(
type='ResNet',
depth=50,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='ODCNeck',
in_channels=2048,
hid_channels=4,
out_channels=4,
with_avg_pool=True)
head = dict(
type='ClsHead',
with_avg_pool=False,
in_channels=4,
num_classes=num_classes)
memory_bank = dict(
type='ODCMemory',
length=8,
feat_dim=4,
momentum=0.5,
num_classes=num_classes,
min_cluster=2,
debug=False)
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='CUDA is not available.')
def test_odc():
with pytest.raises(AssertionError):
alg = ODC(backbone=backbone, neck=neck, head=head, memory_bank=None)
with pytest.raises(AssertionError):
alg = ODC(
backbone=backbone, neck=neck, head=None, memory_bank=memory_bank)
alg = ODC(backbone=backbone, neck=neck, head=head, memory_bank=memory_bank)
fake_input = torch.randn((16, 3, 224, 224))
fake_backbone_out = alg.extract_feat(fake_input)
assert fake_backbone_out[0].size() == torch.Size([16, 2048, 7, 7])