mmselfsup/configs/benchmarks/mmdetection/coco/mask-rcnn_r50-c4_ms-2x_coco.py
Yixiao Fang 5e44bf7179 [Refactor] Refactor evaluation folder and related configs (#538)
* refactor evaluation folder

* update knn script

* update ut

* update configs

* update config names according to mmdet and mmseg

* update docs
2022-11-03 16:09:36 +08:00

61 lines
1.8 KiB
Python

_base_ = 'mmdet::mask_rcnn/mask-rcnn_r50-caffe-c4_1x_coco.py'
# https://github.com/open-mmlab/mmdetection/blob/dev-3.x/configs/mask_rcnn/mask-rcnn_r50-caffe-c4_1x_coco.py
data_preprocessor = dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_mask=True,
pad_size_divisor=32)
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
data_preprocessor=data_preprocessor,
backbone=dict(
frozen_stages=-1,
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
roi_head=dict(
shared_head=dict(
type='ResLayerExtraNorm',
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch')))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24)
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
end=1000),
dict(
type='MultiStepLR',
begin=0,
end=24,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='RandomChoiceResize',
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
custom_imports = dict(
imports=['mmselfsup.models.utils.res_layer_extra_norm'],
allow_failed_imports=False)